945ffacf35469ca002330ba32efbc5ea

Tu-160 Blackjack Strategic Bomber, Russia

The Tu-160 supersonic strategic bomber (NATO reporting name of Blackjack) was manufactured by the Tupolev aircraft research and engineering complex joint stock company of Moscow and the Kazan-Gorbunov Aircraft Production Association in Tatarstan from 1980 to 1992.

The maiden flight of the bomber was completed in December 1981 and it entered service in April 1987. Production has since restarted and a Tu-160 was delivered to the Russian Air Force in May 2000. About 35 aircraft were built of which only 16 are in service in Russia.

Tu-160 strategic bomber

The Tu-160 was designated as White Swan due to its manoeuvrability and anti-flash white finish. The purpose of the aircraft is the delivery of nuclear and conventional weapons deep in continental theatres of operation. The aircraft has all-weather, day-and-night capability and can operate at all geographical latitudes.

The performance of the Russian Tu-160 is often compared with the US B-1B.

The Tupolev Tu-160 has a general resemblance to the US B-1, though the Tu-160 is a substantially bigger aircraft and has little similarity in detail; nobody at all familiar with aircraft would confuse the two. As mentioned, the Tu-160 has a low-mounted swing wing, with “wing-body blending” between the fuselage and the inner fixed wing glove sections, and a conventional swept tail assembly. Construction is unclear — it appears to be made mostly of aircraft aluminum alloy, with some titanium and some composite assemblies. Source airvectors.net

avtu160_5Image: airvectors.net

US B-1B bomber: Detailsb19ae6a11474fa2509e05771e161b87c.jpg

Tu-160 bomber upgrades

Kazan Aircraft Production Organisation (KAPO) was awarded a contract to upgrade the Russian Air Force’s 15 Tu-160 bombers. The Tupolev upgrade package includes new targeting systems, upgraded cruise missiles and an electronic warfare suite. The first upgraded aircraft was delivered in July 2006.

In September 2008, two Tu-160 bombers made the first transatlantic flight for the type, from Murmansk to Venezuela, on a training mission.

In June 2010, two Russian Tu-160 bombers completed a record-breaking 23hr patrol covering 18,000km of flight range. The bombers flew by the borders of Russia over the Arctic and Pacific Oceans and finally landed at Engels base in the Volga region.

9may2015moscow-41

Tupolev completed bench tests of modernised avionics complex for the Tu-160 bomber in March 2013.

The Russian Defence Ministry awarded a RUB3.4bn ($105m) contract to Tupolev and KAPO for the modernisation of three Tu-160 bombers, in July 2013.

A Tu-160 aircraft with upgraded airborne radar and navigation equipment made first flight on 16 November 2014. It entered service with the Russian Air Force in December 2014.

Tu-160 variants

The Tu-160 has eight variants: Tu-160S, Tu-160V, Tu-160 NK-74, Tu-160M, Tu-160P, Tu-160PP, Tu-160R and Tu-160SK.

Tu-160V is an upgraded version which uses liquid hydrogen as fuel while Tu-160 NK-74 is an advance version powered by NK-74 engines.

Tu-160M can accommodate two additional long-range, hypersonic Kh-90 missiles. Tu-160P, also known as Tu-161, is a long range escort or interceptor aircraft.

Kh-90 GELA ГЭЛА (гиперзвуковой экспериментальный летательный аппарат) AS-X-21

843

The Kh-90 GELA ГЭЛА (гиперзвуковой экспериментальный летательный аппарат) AS-X-21 was a Soviet Russian Air to Surface cruise missile which was supposed to replace subsonic intermediate range missiles in Soviet inventory. The missile was an ambitious project, as the main objective was to develop it into hypersonic missile.

The missile was designed by Chelomei at NPO Mashinostrenniye and designated as the AS-X-21 . It was equipped with a 1 Mt thermonuclear warhead and used inertial navigation with mid-course update via data link.

Manufacturer: Chelomei. Maximum range: 3,000 km (1,900 mi). Source wikiwand.com

Tu-160SK is an upgraded commercial version principally used to launch satellites within the Burlak system.

Tu-160M2 on the drawing board

CdS2_-eUAAAXpKmCdS2_pxUEAAa6Ut

New Tu-160 M2 – has begun the construction – Video: Here

dlyakota-ru_fotopodborki_proizvodstvo-samoletov-tu-160-tu-22m3-i-tu-214-kaz-im-gorbunova_11Image: planobrazil.comd652e935f5c88e4e.jpgImage: realnoevremya.ru

Tu-160M2’s maiden flight will now be moved forward to late 2017: Here

Excerpt

Russia’s upgraded Tu-160M2 supersonic bomber is expected to take off by the end of 2018, followed by full-scale production in 2021, according to the Russian Aerospace Forces commander.

Russia’s upgraded Tu-160M2 supersonic bomber may make its maiden flight as early as in late 2018, the nation’s Aerospace Forces commander said Thursday.

Last year, Russia announced the comeback of the Soviet-era Tupolev Tu-160 (NATO reporting name Blackjack) in its upgraded Tu-160M2 variant, pushing back the final phase of developing the next-generation PAK-DA bomber until later.

“The first Tu-160M2 is expected to take off by the end of 2018, followed by full-scale production in 2021,” Col. Gen. Viktor Bondarev told journalists.

The Russian Defense Ministry estimates that serial production of the upgraded strategic supersonic bomber will begin in 2023. It plans to buy at least 50 aircraft.

Russia’s Modernized Tu-160 Bomber: ‘More Lethal Than Ever’: Here

Excerpt 

“However, those tweaks are likely to be fairly minor. The major upgrades are almost certainly going to be focused on the bomber’s avionics suite,” he pointed out.

“In the project to modernize the Tu-160, KRET will be creating new on-board systems, controls, a gimbal-less inertial navigation system, electronic warfare complex, fuel use monitoring systems, as well as weapons control systems,” the representatives said.

“Unlike the stealthy Northrop Grumman B-2 or future B-21, the Russian bomber primarily relies on a combination of blistering speed and nuclear-tipped cruise missiles to deliver its doomsday payload,” he said.

Tu-160 M2 Blackjack

The Russian bomber Tu-160 Blackjack is a supersonic aircraft, variable-geometry wing heavy strategic bomber. With the main purpose destroy target with precision nuclear and conventional weapons at the enemy at distances up to 10.000 km.

Tu-160 M2 – it is a deeply modernized version of the Tu-160 (M) Blackjack. The main differences concern the cockpit, powerplant, armament warehouses of electronics board and also given great importance to the reduction of Blackjack trace.

tu_160m21. It has the latest generation of electronic systems(such as: a long range navigation system and other new generation subsystems); 2. Flight refuelling probe, extended; 3. consists of a four crew comprised the pilot, the co-pilot, the navigation officer and the officer weapon system; 4. The structure and or wing, bring specific depths technology “Stealth”; 5. The Blackjack has two weapons bay, with a total capacity of 40.000 kg; 6. Power Plant NK-32 after burning turbofan engines;

The modernized version of Blackjack M2 will join service not before 2023 and will remain in service until 2063.

Armament:

X-101 (Kh-101)
 
X-555 (Kh-555)

Range: 5000-10.000 km
Cruise speed: 900 km/h
Service ceiling: 30-10.000 m
Circle of equal probability (CEP):
5-10 m
Warhead weight
(conventional head): 400 kg

  Range: 2000-5000 km
Cruise speed: 900 km/h
Service ceiling: 40-110 m
Circle of equal probability (CEP): 5 m
Warhead weight (conventional head):
410 kg

Version:

  • Χ-55 («izdelie 120» or RKB-500, AS-15)
  • Χ-55-ΟΚ («izdelie 124»)
  • Χ-55SM («izdelie 125» or RKB-500B, AS-15b) – long range
  • Χ-65 – configuration of Χ-55 with conventional warhead
  • Χ-555 – conventionally armed version with an improved guidance system and warhead. In October 1999 he was first tested.

tu_160

DESIGNER
OKB Tupolev
COUNTRY
Russia
TYPE
Strategical Bomber
CREW
4
POWER-PLANT
Four bypass engine ΝΚ-32
Thrust, kN
4 x 245.70
DIMENSIONS
 
Length, m
54,10
Height, m
13,10
Wing span, m
 
– minimum
35,65
– maximum
55,70
Wing area, m2
360
WEIGHT
 
Maximum take-off, kg
275.000
Normal take-off, kg
267.600
Empty, kg 110.000
Internal fuel, kg 171.000
PERFORMANCE
 
Maximum speed, km/h
2.200
Max speed in low height, km/h 1.030
Cruising speed, km/h 850
Rate of climb, m/min 4.200
Combat radius, km 6.000-15.000
Service ceiling, m
13.000
ARMAMENT
Warload- 22.500 kg (normal), maximum -40.000 kg.
2 drum with Cruise missiles Kh-55 and Kh-55L (Χ 55 or Χ 55M/SM (X-555 or X-101), with 12x Kh-15 with nuclear and HE warhead, thermonuclear and free fall bomb, mine.

Tu-160 M2 Blackjack source redstar.gr

xmjygeg

Bomber design

The bomber’s airframe has a distinctive appearance, with the wing and fuselage gradually integrated into a single-piece configuration. The airframe structure is based on a titanium beam, all-welded torsion box. Throughout the entire airframe, all the main airframe members are secured to the titanium beam.

The variable geometry outer tapered wings sweep back from 20° to 65° in order to provide high-performance flight characteristics at supersonic and subsonic speeds. The tail surfaces, horizontal and vertical, are one piece and all-moving.

7e83489de9e495f3b7043c58863

The Tu-160 uses fly-by-wire controls. The aircraft is equipped with three-strut landing gear, a tail wheel and a brake parachute. It can attack strategic targets with nuclear and conventional weapons in continental theatres of operation. For take-off, the aircraft requires a concrete runway of 3,050m.

429883dsc06767Image: redstar.gr

Tricycle landing gear

161Image: paralay.com

Tricycle landing gear is controlled bow rack and two main units located behind the center of mass of the aircraft. Track chassis – 5400mm, chassis base – 17800 mm. The size of the main wheels – 1260h485 mm, bow – 1080h400 mm. The nose landing gear located under the technical compartment in unsealed niche (in which the hatch to enter the plane), is equipped with a two-wheeled cart with an aerodynamic deflector, “the pressing” air jets to the tarmac just “garbage”, preventing it sucked into the air intake (hereinafter aircraft It is equipped with motor protection device against foreign objects using compressed air from the turbofan compressor). The front is removed by turning back on the flight.

dsc06750Front landing gear with an aerodynamic deflector behind the wheels to prevent debris from entering the engines – Image: redstar.gr160101Rear landing gear – Image: paralay.com

The two main landing gear with a six-wheeled trolleys mounted directly on the center and removed back on the flight in special compartments niches. When cleaning rack shortened, that allows you to “fit” in the minimum size of the chassis cover. With the release of the main rack, pushing, shifting to 600 mm to the outside. This increases the track chassis. The chassis design allows operation with existing bomber airfields without additional work on the strengthening of the runway. Translated by google – Source paralay.com

Tu-160 cockpit

t7ykgTu-160 “Valery Chkalov” (publication – 2012, photo – V.Savitsky, http://www.mil.ru ).

The crew of the Tu-160 comprises a pilot, co-pilot, a navigator and an operator. The four crew are equipped with zero / zero ejection seats, which provide the crew with the option of ejecting safely throughout the entire range of altitudes and air speeds, including when the aircraft is parked.

tu-160_cockpit_3tu-160_cockpit_5clhyy

There are four crew sitting in the pressurized cockpit in a 2×2 arrangement, including pilot (front left seat), co-pilot (front right seat), navigator / offensive systems operator (back left seat), and navigator / defensive countermeasures systems operator (back right seat). All crew sit on Zvezda K-36LM “zero zero (zero altitude zero speed)” ejection seats, which fire upward through doors on the roof of the cockpit. The ejection seats were eventually modified to pneumatically “pulse” to provide a massage, reducing crew weariness on long missions. The pilot and copilot have fighter-like sticks instead of yoke controls; cockpit layout is traditional, based mostly on dial indicators and displays, archaic by Western standards. A small galley and toilet are provided for crew comfort, unusual luxuries by the standards of Soviet-Russian combat aircraft. The crew get into and out of the aircraft through a door in the nose gear wheel well. Source airvectors.net

KD-36LM ejection seats

1816

K-36seat.gif

In the cockpit and cabins, all the data is presented on conventional electro-mechanical indicators and monitors, and not head-up displays or cathode ray tube displays.

The Tu-160 has a control stick for flight control as used in a fighter aircraft – rather than control wheels or yokes, which are usually used in large transporter or bomber aircraft.

thumb-1920-413913

Weapons

The Tu-160 can carry nuclear and conventional weapons including long-range nuclear missiles. The missiles are accommodated on multi-station launchers in each of the two weapons bays.

tu_160blackTu-160 Blackjack. © K. Panitsidis098tmpd_hba2

Version:

  • Χ-55 («izdelie 120» or RKB-500, AS-15)
  • Χ-55-ΟΚ («izdelie 124»)
  • Χ-55SM («izdelie 125» or RKB-500B, AS-15b) – long range
  • Χ-65 – configuration of Χ-55 with conventional warhead
  • Χ-555 – conventionally armed version with an improved guidance system and warhead. In October 1999 he was first tested.

source redstar.gr

Raduga Kh-55 (AS-15) subsonic air-launched cruise missiles

1f4a4807518bbc15a215157a30d892da.jpg

The Kh-55 has pop-out wings and fins, and has an INS to get to the target area and terrain-following system for terminal attack. It differs visibly from the Tomahawk in that its entire R95-300 turbofan engine is extended out of the fuselage after launch, not just the air intake.

66b59cf5966c0cbcc190b20f21d93434

   KH-55 / AS-15 KENT (ESTIMATED SPECIFICATIONS):
   _____________________   _________________   _______________________
 
   spec                    metric              english
   _____________________   _________________   _______________________

   wingspan                3 meters            10 feet
   length                  6 meters            19 feet 7 inches
   total weight            1,500 kilograms     3,300 pounds
   speed                   subsonic
   range                   2,500 kilometers    1,550 MI / 1,350 NMI
   _____________________   _________________   _______________________

Source cmano-db.com

d78081263e3471cd6a07677ea082619e

The Tu-160 is capable of carrying the strategic cruise missile Kh-55SM, which is known in the West by the Nato designation and codename AS-15 Kent. Up to 12 Kh-55SM missiles can be carried, six in each bay. The Kh-55SM is propelled by a turbofan engine. The maximum range is 3,000km, and it is armed with a 200kt nuclear warhead.

AS-15 Kent B [Kh-55SM, 200kT Nuclear]

09a265b73d6dff3f05891fba72a2cb85.jpg7292288d8dde11135985092ddd786766

GENERAL DATA:  
Type: Guided Weapon Weight: 1700 kg
Length: 8.9 m Span: 3.1 m
Diameter: 0.77 Generation: None
Properties: Terrain Following, Weapon – TERCOM Navigation, Weapon – Pre-Briefed Target Only, Level Cruise Flight
Targets: Land Structure – Soft, Land Structure – Hardened, Runway, Mobile Target – Soft, Mobile Target – Hardened
WEAPONS:
AS-15 Kent B [Kh-55SM, 200kT Nuclear] – (1987, Tu-95MS-16) Guided Weapon
Land Max: 2963.2 km.

Source cmano-db.com

Kh-55 series missiles are carried by Bear and Blackjack heavy bombers. The Bear can carry six in an internal rotary launcher. It can also carry more Kh-55s externally, though in an overload flight condition: two are carried on a stores attachment between the fuselage and inboard engine, and three are carried on a stores attachment between the two engines on each wing, for a total of ten missiles. Roughly 1,500 Kh-55s were built into the early 1990s.

* A naval version of the Kh-55SM designated “3K-10 Granat” (NATO codename “SS-N-21 Sampson”) was built in parallel. Sources hint that it was strictly submarine launched. There are sketchy reports of an experimental derivative of the 3K-10 named the “3M-55 (SS-N-27)” that is intended for the antiship role, and has a “warhead” that is actually a solid fuel missile that performs a terminal attack at Mach 2.5 speed.

There was also production of a limited batch of a ground-launched version for the Red Army, the “RK-55” (NATO codename “SSC-X-4 Slingshot”) that was comparable to the US GLCM, but the INF treaty that killed off the GLCM killed off the RK-55 as well.

Source craymond.no-ip.info

13225858_161n

Kh-65 anti-ship missile

001.jpg85923a76-e6e6-4183-91ea-94b4cb534667Original.jpg

The Kh-65SE is a derivative of Kh-65 cruise missile intended as a long range, aircraft-launched anti-ship missile. It features an active radar seeker added to the Kh-55/65 navigation system for the terminal phase of the flight engagement.

The Kh-65SE has been designed to perform as a sea-skimming anti-ship missile with terminal active radar homing.

1b20de5bccd6e95302c6ff93f4e62e77.jpg

Dimensions

Diameter: 510 millimeter

Length: 6.04 meter (19.8 foot)

Wingspan: 3.10 meter

Performance

CEP: 150 meter

Max Range: 280 kilometer (151 nautical mile)

Speed

Top Speed: 256 mps (922 kph)

Weight

Warhead: 450 kilogram (992 pound)

Weight: 1,250 kilogram

Source deagel.com

Kh-555 – conventionally armed version

kh_555_cruise_missile-75860

The Kh-555 is a conventional variant of the Kh-55. The nuclear warhead has been replaced by a 400 kg unitary HE, penetration HE, or submunitions warhead. Other notable changes include the following:

  • Larger conformal fuel tanks (compared to the Kh-55SM).
  • Reduced radar cross-section.
  • Improved accuracy.
  • Increased range, 3,500 km.

Source missilethreat.csis.org

russian_weapons_8

Kh-101 air-launched cruise missile

20121031101037.jpg

The Kh-101 is an advanced cruise missile under development to eventually replace the Kh-55 missile onboard the Soviet/Russian strategic bombers such as Tu-160 and Tu-95. The Kh-101 has a 400-kg conventional warhead, stealth features, high subsonic speed and low altitude flight profile. The conventionally-armed Kh-101 has also been referred to as the Russian counterpart to the United States Air Force AGM-129 air launched cruise missile.

The Kh-101 has a highly accurate navigation system based on the GLONASS satellite navigation system and a highly accurate Inertial Navigation System (INS) as backup with a terminal TV-based seeker for precision-attack missions. The Kh-101 development has been strongly influenced by the successes of US military campaigns in the late 1990s and the emerging role of standoff weapons in modern conflicts. Up to eight (Tu-95) or up to 12 (Tu-160) of these missiles can be carried by a single Russian heavyweight bomber.

The Kh-101 and Kh-102 air launched cruise missile are supposed to be members of the same family of missiles sharing components and overall performance. The main difference between them is their warhead. As of 2006, the Kh-101 was near ready for deployment. Unconfirmed reports suggest that the missile entered service in early 2012 or later in 2013/2014.

ejittvx

Performance

CEP: 6 meter

Max Cruising Flight Altitude: 10,000 meter

Max Range: 5,500 kilometer (2,970 nautical mile)

Min Cruising Flight Altitude: 30 meter

Speed

Cruise Speed: 972 kph (0.81 mach)

Top Speed: 1,236 kph (1.03 mach)

Weight

Warhead: 400 kilogram

Weight: 2,400 kilogram

Source deagel.com

The weapons bays are also fitted with launchers for the Kh-15P, which has the Nato designation and codename AS-16 Kickback. The Kh-15P Kickback has solid rocket fuel propulsion, which gives a range up to 200km. The Kickback can be fitted with a conventional 250kg warhead or a nuclear warhead. The aircraft is also capable of carrying a range of aerial bombs with a total weight up to 40t.

KH-15 (AS-16 KICKBACK)

twcruz69

Even the fast KSR-5 left something to be desired. Storable rocket propellants are corrosive and highly toxic, making them difficult to handle, and the KSR-5’s range and capability were inadequate. In the 1970s, the US Navy developed the Grumman F-14 Tomcat interceptor, which featured long-range Phoenix air-to-air missiles. The Tomcat / Phoenix combination, backed up by the Grumman E-2C Hawkeye carrier-based radar early warning aircraft, presented a clear threat to Soviet bombers operating in the anti-ship role. The Hawkeye could provide long-range “eyes” for the Tomcat, which had long range and endurance, allowing it to fire a Phoenix at a Soviet bomber long before the Red aircraft got within range of a carrier group. If the bomber did manage to take a shot with a cruise missile, the Phoenix might well shoot the missile down.

The Tomcat / Phoenix / Hawkeye threat led the Soviets to develop the low-level launch versions of the Kh-22 and KSR-5 missiles, and also to work on a missile that was much harder to intercept. The Soviets were impressed enough by the Boeing SRAM that Raduga developed an equivalent, the “Kh-15 (AS-16 Kickback)”, which has almost the same external appearance as the SRAM. It was the first Soviet large ASM with solid-fuel rocket propulsion.

kh15.jpg

The Kh-15 is a simple spike of a missile with three tailfins. The resemblance to SRAM is so close that it is tempting to refer to the Kh-15 as “SRAMski”. Unlike SRAM, however, as with the other large Soviet ASMs, the Kh-15 was designed for both strategic and anti-ship attack. There are three versions: the standard Kh-15 nuclear-armed strategic variant, with inertial guidance only; a conventionally-armed anti-ship variant, the “Kh-15A”, with an active radar terminal seeker; and an antiradar variant, the “Kh-15P”, with a passive radar seeker. An export version of the Kh-15A, the “Kh-15S”, was also built. After launch, the missile climbs to the edge of space and then dives on the target steeply at Mach 5, making it very hard to hit.

Raduga began work on the Kh-15 in the late 1960s and it was accepted for service in the early 1980s. A Tu-22M Backfire bomber can carry six Kh-15s in a revolver launcher in the weapons bay, plus four more under the wings. It is also carried by the Tupolev Tu-160 Blackjack bomber. Source craymond.no-ip.info

The Aviation Thermobaric Bomb of Increased Power (ATBIP), nicknamed the “Father of All Bombs” (FOAB)

avbpm-image03“Father of All Bombs” (FOAB) – Image: globalsecurity.org

Probably the most powerful conventional (non-nuclear) weapon in the world today is Russian “Aviation Thermobaric Bomb of Increased Power” (ATBIP, Russian: Авиационная вакуумная бомба повышенной мощности (АВБПМ)), nicknamed “Father of All Bombs” (FOAB) (Отец всех бомб). It is a Russian-made air-delivered / land activated thermobaric vacuum bomb with the same destructive power as a small tactical nuclear weapon.

2iln7twImage: hightechnologyzone.blogspot.com

FOAB overview

Blast yield of 44 tons of TNT produces just 7.8 tons of a new type of high explosive (explosive that produces supersonic velocity “shock front” and higher temperatures), developed with the use of nanotechnology. The bomb contains a 6,400 kilogram (6.4t) charge of a liquid fuel such as ethylene oxide, mixed with an energetic nanoparticle such as aluminium, surrounding a high explosive burster.

The bomb was successfully field-tested in the late evening of September 11, 2007. In describing the bomb’s destructive power, Russian deputy armed forces chief of staff Alexander Rukshin was quoted as saying, “all that is alive merely evaporates”. According to the Russian military, the new weapon will replace several smaller types of nuclear bombs in its arsenal. Source hightechnologyzone.blogspot.com

The bomb is reportedly four times as powerful as the US military’s GBU-43/B Massive Ordnance Air Blast bomb (whose official military acronym “MOAB” is often colloquially called the “Mother of All Bombs” as a backronym). This Russian device would therefore be the most powerful conventional (non-nuclear) weapon in the world.

At the same time there is a nonlinear relationship between the power of the bomb and the area damaged. The Russian bomb area 20 is larger and the combustion temperature is a factor of 2 higher. The picture of destruction by explosion AVBPM follows:

  • 90 meters from the epicenter – the complete destruction of even the most hardened structures.
  • 200 meters from the epicenter – the complete destruction of unfortified structures and the almost complete destruction of concrete structures.
  • 300 meters from the epicenter – the almost complete destruction of unfortified structures (houses). Reinforced structure partially destroyed.
  • 450 meters from the epicenter – partial destruction unfortified designs.
  • 1100 meters from the epicenter – the shock wave breaks the glass.
  • 2300 meters from the epicenter – the shock wave can knock a person down.

Source globalsecurity.org

Tu-160 avionics

bac8145a9ccf62c7cd74027e3042aa04

The aircraft is highly computerised, and the avionics systems include an integrated aiming, navigation and flight control system, with a navigation and attack radar, an electronic countermeasures system, and automatic controls.

The nose of the aircraft contains the Obzor-K (Survey) radar, which is used for both ground and air observation. It also contains another radar, the Sopka (Hill), which is used for terrain following when flying at low altitude. The upper center part in front of the windscreen contains the retractable inflight refuelling probe. Under the front fuselage there is a forward looking OPB-15T optical bombing sight and video. Behind the sight, there is the nose gear. The four man crew enters the cabin through the front gear bay. The pressurized cabin has four fighterjet-like K-36LM ejection seats. There are two control sticks for commander pilot (front left) and co-pilot (front right). The Tu-160 has a conventional flight deck, which is divided by a central console with the thrust and flap selection levers for the co-pilot. Behind the pilots there is the navigator/offensive weapons operator (left) and the navigator/electronic warfare and communications operator (right). Behind the crew there is corridor leading to a galley and a toilet. 

The Tu-160 houses a Baykal self-defence systems of which most systems are located in the ‘carrot’ tail cone. These systems include a Mak (Poppy) infra-red missile launch sensor, radar warning receiver, electronic jammer and a battery of APP-50 chaff/flare dispensers. The underside of the tailcone houses the brake chutes. Directional control is provided by an all moving fin. Source milavia.net

Obzor-K radar

000-Tu-95MS-Obzor-1S.jpgLeninetz Obzor-MS clam pipe navigation and attack pulse-doppler radar (For illustration) – Image: ausairpower.net

Obzor-K is an updated version of Obzor designed for the Tu-160 (Aircraft K). Linked to Sopka TFR. Range is around 300km.

A modernised Obzor radar is being developed for upgrading remaining Tu-160 and some Tu-95MS with LPI (Low Probability of Interception) and SAR (Synthetic Aperture Radar) modes. Source aerospace.boopidoo.com

Retractable inflight refuelling probe

OPB-15T optical bombing sight and video

dsc06749OPB-15T optical bombing sight and video under the nose of Tu-160 – Image: redstar.gr

Astrovizir AB-1 SM astro-navigation system

kpg77Image: militaryrussia.ru

In the mid 80-ies in the CDB “Arsenal” it was developed and produced in series astro-navigation system AV-1cm to determine (with inertial gyroscopic system and on-board computing device) aircraft position coordinates (strategic missile carrier Tu-160) at the lengthy duration of the flight. With its small size and weight, this asthma rovizir able to measure the angular coordinates of the stars to the 4th magnitude against the backdrop of the daytime sky with an accuracy of less than 0.01 arc. Translated by googlesource tinlib.ru

Baykal self-defence systems

dsc08245 Image: redstar.gr

APP-50 chaff/flare dispensers

The APP-50 passive jamming automatic units (decoy dispensers) are designed to protect aircraft from engagement in flight by airborne missile systems and air defence missile/artillery systems by dispensing radar/IR interference rounds. The dispensers are installed onboard aircraft, and can be controlled manually (from the control panel) or automatically. The APP-50 dispensers can be delivered in two variants: APP-50P for autonomous operation; APP-50A for integration into onboard electronic support systems. The dispenser can launch rounds (up to three types) in continuous, salvo, combined and emergency modes. Launch time intervals, number of salvos and number of rounds in one salvo (from 1 to 4) are set by operator or by the electronic support system.

Developer and manufacturer: Gorizont JSC

Performance:

 Launch altitude envelope, m  0 – 30, 000
 Launch time intervals, sec  0,1 – 8,0
 Round types  PRP-50, PPI-50
 Caliber, mm  50
 Number of rounds  24
 Dispenser weight (loaded), kg  53 – 56,5
 Launch modes  continuous,

 salvo, by series

Source ktrv.ru

dsc06766Image: redstar.gr

Tu-160M2 to Have New Avionics That Will Increase Its Effectiveness Twofold

In addition to a new engine, Russia’s elite Tupolev Tu-160M2 strategic bomber (“White Swan”) is capable of carrying cruise and nuclear missiles and will receive cutting-edge avionics, said Vladimir Mikheev, the adviser of the deputy head of Russia’s Radio-Electronic Technologies Concern (RETC), according to Rossiyskaya Gazeta.

The new avionics and electronic warfare system of the Tu-160, codenamed Blackjack by NATO military experts, will begin this year. Construction of the design materials and documentation of battle performance characteristics and technical specifications are currently underway, Mikheev informed.

“There will be nothing left from the earlier version of Tu-160, only the platform. Much more advanced hardware will be installed on it,” Mikheev said, as cited by Rossiyskaya Gazeta.

The new avionics system is currently being tested on the Sukhoi PAK FA Tu-50, Russia’s fifth-generation fighter. After that, military engineers will take best elements tested on the Tu-50 and use them to create an aircraft with fundamentally new capabilities, the official representative of RETC said.

The new strategic bomber will also be equipped with an advanced radio-electronic system, highly effective against anti-aircraft missiles.

The revival of the production of this bomber was announced by the Russian Defense Minister in April 2015.

The Tu-160M2’s advanced equipment will make it possible to increase its effectiveness by more than two-fold as compared to the old version.

Russian Tu-160 Blackjack strategic bomber

Turbofan engines

tu-160-21

The aircraft propulsion system consists of four Samara NK-321 turbofan engines, each of which provide a maximum thrust of 25,000kg. The engines are installed in two pods under the shoulders of the wing. The air intake incorporates an adjustable vertical wedge.

160100Air intake incorporates an adjustable vertical wedge – Image: paralay.com

The bomber has an in-flight refuelling system. In the inoperative position, the refuelling probe is retracted into the nose of the fuselage in front of the pilot’s cabin. The aircraft fuel capacity is 160,000kg.

Russian will receive the first delivery of the renewed NK-32 engines for the Tu-160M2 bombers: Here

NK-32 engine

nk321_03

NK-32 is a three-shaft turbofan engine with 3-stage. fan, 5-stage. střednětlakým compressor with discharge of compressed air to further letounové systems 7-trans. a high pressure compressor (the compressor blades are made of titanium, steel, and in the steps of high pressure from nickel alloys). The engine has an annular combustion chamber with two lighters 1-trans. high pressure turbine blades monocrystalline, 1-trans. with medium and two-stage. high pressure turbine. The mixer currents afterburner chamber with a reduced infrared radiation and limited dýmením. Restrictions dýmení probably so true for Take-off with afterburner. Takeoff Tu-160 is in fact accompanied by a distinctive orange smoke nicknamed “foxtail”. This coloring is caused by the use of nitride fuels and a high proportion of nitrogen oxides in flue gas. Even so, the NK-32 one of the first engine on which were applied some approaches to reduce radar visibility and reduce infrared radiation. Output nozzle is a convergent-divergent having an outer diameter of 970-1760 mm.

dsc06764Image: redstar.gr

Current status of NK-32

Status after production

Serial production of engines NK-32 finished sometime in 1992-1994 (eg. Baranova OKB in 1994 ceased production of some components of the engine). In the following years many race only carried out repairs and inspections. And in a very limited capacity – at best, while only worked on one engine, others did not order any. This corresponded to a stagnation of the entire Russian Air Force.

Modernization

According to sources [Tomsk] had already done before 1996 modernization of the Tu-160 (marked by some media aircraft Tu-160M). Something started to happen but in the new millennium

In 2004-2006, based on government procurement carried out modernization of NK-32: Kuznetsov plant produced (or modified?) Several engines, which has been greatly increased resurs compared to the original types. This contract coincided with the beginning of an initiative on the modernization of the Russian long-range aviation. The first modified aircraft, the aircraft was No.02-02 “Valentin Bliznjuk” into service in the Air Force back filed July 5, 2006.

However, although the Russian Air Force plans its modernization in 2015, agency contract to modernize the entire fleet of NK-32 at that time received. Until mid-2007, at a meeting of representatives of the office Tupolev and OKB Kuznetsova confirmed the need for further operation and modernization of engines NK-32nd

The development office planned in 2008 to create documentation for the conversion of existing engines NK-32 phase I to release the NK-32 Phase II and from 2009 onwards to implement these modifications to increase the reliability and economical operation of power units of airplanes Tu-160th The changes should apply to the core engine, it should implement some structural and technological elements applied by ground gas turbine NK-37th One of the sources already in 2006 indicates that NK-32 engines Stage II have been tested on a test stand. Necessity to accelerate repairs and modernization of NK-32 is gaining prominence mainly because the Russian Air Force currently stepping up its activities.

dsc06768Image: redstar.gr
NK-32/321 RD-36-51 RD-36-51
Thrust – maximal kp 14000 20000  
– Full afterburner kp 25000   20000
– Supersonic cruise mode kp   5100 5100
– Subsonic cruising mode kp      
– To overcome M = 1 adj. He slept. kp      
– idle kp      
SFC – maximum thrust kg.kp -1.h -1      
– Full afterburner kg.kp -1.h -1      
– Supersonic cruise mode kg.kp -1.h -1   1.26 1.26
– Subsonic cruising mode        
Airflow kg.s -1 365 (?)    
pass ratio   1.36    
Compressibility blower        
The total compression of the compressor 28.2    
Maximum temperature before turbine C 1357    
The total length of the engine mm 7453   5228
The maximum diameter of the engine mm 1700 8)   1415
diameter blowers mm      
Dry weight engine kg 3650   4125
The full weight of the engine kg      
Acceleration from idle to max. Draft with      
Acceleration from idle to full adj. He slept. with      
Source [Dvig]   [SST]

Source leteckemotory.cz

NK-32 based engine developed for PAK DA

dSeAWThe prototype engine for the PAK DA on a test bench of “Kuznetsov”, the publication of 13.11.2014 ( http://www.tupolev.ru/ ).

Four engines are installed in pairs in nacelles at the bottom of the fuselage. TA-12 APU is used as a stand-alone power unit. Source tupolev.ru

TA-12A APU

ta-12

TA12-60 is a single-shaft auxiliary gas-turbine engine with the equivalent power of 360 kWt. This engine is designed for aircraft and helicopter APUs. It is used for air turbine start of the helicopter and aircraft mid-flight engines, AC electric power of 115/200 V, power up to 60 kWA and providing air conditioning for cockpit and cabins.

High overall efficiency of the engine is based on the use of a 4-stage axial compressor. An annular reverse-flow combustion chamber of evaporative type provides 0,99 burning and low content of hydrocarbons in the exhaust gases. The engine contains a 3-stage axial turbine. Driving units, including alternator, are installed on the engine’s gearbox.

The noise level of the TA12-60 engine, when installed on the craft, does not exceed 90 dB.

The engine complies with the Norms of Aircraft Airworthiness (NLGS-3); this is confirmed by a type certificate No 101-VD issued by the Aviation Register of the IAC.

Since 2005 the TA 12-60 APU has been operated under the second strategy. The TA 12-60 APU is operated subject to the technical condition till the specified life time of the principle components is terminated (4,000 hr/starts).

The TA12-60 engine has been in serial production since 1996.

APPLICATION: Tu-204, Tu-214, Tu-334, Be-200, An-70, Yak-42.

Technical features:

Absorbed electric power of AC, kVA 60
Bleed air consumption, kgf 1,6
Bleed air pressure, kgf/sm2 4,9
Bleed air temperature, °С 250
Start and operation altitude, m 7000/9000
Environmental temperature, °С ± 60
Weight (without generator), kg 297
Specified number of operating hours/starts 2000/4000
Overall dimensions, mm 1588х682х718

Source aerosila.ru

Tupolev-Tu-160-Foto-Dmitriy-Christoprudov-7.jpg

Performance

The Tu-160 can climb at a rate of 70m per second. The maximum and cruise speeds of the bomber are 2,220km per hour and 960km per hour, respectively. The range of the aircraft is 12,300km. Its combat radius is 7,300km.

The service ceiling is 16,000m. The Tu-160 has a flight endurance of 15 hours.

The aircraft weighs around 110,000kg and its maximum take-off weight is 275,000kg.

Main material source airforce-technology.com

Revised Jan 11, 2017

tu-160-15

Performance characteristics of Tu-160

Crew: 4 persons

Dimensions TU-160
Length: 54.1 m; Wingspan: 55.7 / 50.7 / 35.6 m; Height: 13.1 m; Wing area: 232 m²
Empty weight: 110 000 kg
Normal takeoff weight: 267,600 kg
Maximum takeoff weight: 275,000 kg
Engines: 4 × turbofans NK-32
Thrust max: 4 × 18 000 kg
thrust in afterburner 4 × 25 000 kg
fuel Weight: 148 000 kg

Maximum speed: at a height – 2,200 km / h (M = 1.6); In land – 1030 km / h (M = 0.84)
Cruising speed: 850 km / h (M = 0.69)
Maximum range without refueling 18 950 km
Practical range without refueling 12 300 km
combat radius of 6,000 km
Length flight: 25 hours
Practical ceiling: 22 000 m
Rate of climb: 4,400 m / min,
the run / Running distance: 900 m
thrust-to-weight ratio: at maximum take-off weight, 0.37; at normal takeoff weight-0.36

Source kollektsiya.ru

btu160_vlImage: combataircraft.comTu-160-Comp-1Image ausairpower.netRussia’s President Vladimir Putin in the pilot’s seat of a TU-160 supersonic strategic bomber

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s