Saab Gripen E/F

Saab’s next-generation Gripen E combat jet will be rolled out of the assembly site at Linkopping, Sweden, on May 18, the company announced during a briefing with reporters at the Singapore Airshow.

Three aircraft are planned for the test phase of the new aircraft E/F variant, which has been purchased by Swedish and Brazilian air forces.

No timing has been given for the first flight of the jet, which incorporates a raft of improvements over the earlier C/D version, most notably the addition of an active electronically scanned radar. Source

Saab rolls out first Gripen E fighter


PICTURES: Saab rolls out first Gripen E fighter


Saab has unveiled its next-generation Gripen E fighter, some three years before delivering its first of at least 96 production examples to the air forces of Sweden and Brazil. Source

20saab2Saab_07Photo: Tony Osborne/AW&STSaab_08Photo: Tony Osborne/AW&ST

Gripen E goes supersonic: Here


Defence and security company Saab announces that the Gripen E smart fighter flew supersonic for the first time. The aircraft broke the sound barrier over the Baltic Sea on the 18th October.

The Gripen E smart fighter flew at speeds greater than the speed of sound, at over Mach 1, as part of the ongoing flight trials programme. The purpose was to collect data from the aircraft as it achieved and sustained supersonic speed. The flight took place over the Baltic sea and the aircraft sustained supersonic speed for a number of minutes, whilst carrying out maneouvres, demonstrating the successful combination of the aicraft’s fighter design and its powerful engine. 

Here’s the first footage of Gripen E taking off read more: Here

Gripen E Taxi testing 

Saab begin production of 2 seat version for Brazil: Here


Saab is developing its first aircraft for Brazil’s air force, the company announced during the LAAD International Defense & Security Exhibition.

The manufacturer’s work includes a two-seat version which has already begun production. Saab is coordinating with a number of Brazilian companies for the project.

Brazilian Air Force Gripen E/Fs will have an initial operational capability (IOC) from Day One: Here

Brazilian Navy makes moves towards potential new Gripen maritime fighters: Here


The Brazilian Navy has assigned an official to the Brazilian Air Force’s Coordinating Committee of the Combat Aircraft Program to monitor the air force’s procurement of 36 Saab F-39 Gripen fighter jets, the navy told Jane’s on 18 July. The move underscores the service’s interest in buying a maritime Gripen.

Brazil reveals Gripen production schedule, Embraer’s manufacturing role

The Brazilian Air Force (FAB) has revealed production details for the 36 Saab Gripen E/F (F-39) combat aircraft it ordered for around USD5.4 billion in 2014, and told Jane’son 5 October that deliveries will run from 2019 to 2024.

Brazil’s Gripens will begin a certification process in January 2019, and single-seat and twin-seat flight test instrumentation aircraft will perform first flights in July 2019 and October 2021, respectively.

Saab will fully manufacture 13 aircraft, and the remainder will have Brazilian participation.

An initial 11 serial-production single-seat Gripen E aircraft are to be delivered between October and November 2021, and the remaining eight single-seat aircraft will be initially built by Saab with on-the-job training for Brazilians and final assembly done in Brazil. Source

Gripen E is an enhanced version of the Gripen C/D multi-role aircraft. Saab started the construction of the pre-production Gripen E test aircraft, designated as 39-8, in July 2013. Initial construction works involve the assembly of the aircraft’s front fuselage, while the payload mounting works will be carried out by RAUG.

Gripen E being manufactured @Saab

New equipments to be integrated into the Gripen E were tested and proved in the Gripen 39-7 E/F demonstrator programme during which the test aircraft has flown for more than 250 hours in Sweden, the UK, India and Switzerland since 2008. The testing of the Gripen E is being overseen by Armasuisse.

The Gripen Demo aircraft (serial 39-7) is a converted JAS 39D that has been used to help de-risk the Gripen E program since 2008, testing a number of new capabilities for the project ahead of the main development contract, which is now in place.


The Demo aircraft (39-7) has demonstrated the initial pre-production AESA radar, the missile approach warning system (MAWS), the new F414-GE-39E engine, SATCOMs, new displays and avionics architecture (in the back seat), increased internal fuel, new landing gear, two new stores stations, the new digital head-up display (HUD), the Selex Skyward-G IRST and now a production Selex ES-05 Raven AESA radar.

Gripen NG Demonstration aircraft

In addition, parts were already in production for the first two Gripen E test aircraft (39-8 and 39-9) plus the static test rig (39-083). A first flight with the production-standard IRST was conducted on March 31, 2014.

Flight Ready: The Gripen Fighter E in the production hall of Saab in Linkoeping, Sweden. Photo: Gaëtan Bally (Keystone) – Source tagesanzeiger.ch27gripen2
The Gripen E will operate at a higher all-up weight: 16.5 tonnes compared to 14 tonnes in the JAS 39C. It also carries 40 per cent more fuel and offers two additional stores pylons. The new AESA radar is accommodated inside a new radome, and the nose gear now has a single wheel, which allows the Gripen E to operate from a runway with arresting gear.

Other finer details include a new ammunition box with a new conveyer system, but the same gun. The Gripen E no longer ejects cannon shells, as they would have hit the new shoulder stores stations.

Nose gear now has a single wheel


Nose gear now has a single wheel, which allows the Gripen E to operate from a runway with arresting gear Source Saab

New AESA radar

ELEC_ES-05_Raven_Gripen%20AESA_lgThe new AESA radar is accommodated inside a new radome

Other finer details include a new ammunition box with a new conveyer system, but the same gun. The Gripen E no longer ejects cannon shells, as they would have hit the new shoulder stores stations.

Structurally things have also changed. The outer wings now attach farther out — at pylon three — to make for extra internal space for fuel tanks, and new aluminum-lithium integral frames are provided for the wing attachments. The main gear retracts into the wing now, rather than the fuselage. There are larger engine air intakes and a new secondary environmental control system (ECS) for the powerful AESA radar at the bot-tom of the fin leading edge. A revised wingtip design accommodates new electronic warfare antennas. Although the canopy, seat and outer elevons are taken from the Gripen C, this is a very new beast. Source

Héroux-Devtek to produce landing gear systems for Gripen E fighter jet: Here


Under the terms of the agreement, Héroux-Devtek will manufacture, assemble and deliver complete landing gear systems for the Gripen E. Operations will be mainly carried out from the Corporation’s facilities located in the United Kingdom. The design and development of the landing gear is currently being finalized by Héroux-Devtek’s U.K.-based engineering team.

Based on current program status, this new contract covers a total of 96 aircraft, representing firm orders for the Gripen E for the Swedish and Brazilian air forces. It also includes the provision of spare parts. Deliveries are expected to begin in calendar 2017. The aircraft is also being considered by several other countries and the contract provides an option for Saab to award the manufacturing of additional complete landing gear systems to Héroux-Devtek……

Gripen E fighters getting pneumatic missile eject launcher pylons

Pneumatic missile eject launcher pylons are to be developed and supplied to Saab of Sweden by Excelis under a long-term agreement.

Exelis said the pneumatic missile eject launcher pylons, or PMEL, will be for use on Saab’s Gripen E fighters and allow the powered ejection of Meteor and AIM-120 advanced medium-range air-to-air missiles from the underside of the aircraft fuselage.


“This is a great opportunity for us to build on Exelis weapon carriage and release experience and continue to grow in the air-to-air missile eject market,” said Ken Harrison, vice president and general manager of International Night Vision and Communications Solutions at Exelis.

Exelis said signature of the agreement between the two companies released an immediate design and development phase contract, which includes the delivery and supply of several flight-trial units. A later initial production contract will provide for the supply of 214 PMEL units to Saab.

Work under the contract will be conducted at Exelis’ facility in Brighton, England. Source


Gripen E design details

The Gripen E has an overall length of 15.2m, wingspan of 8.6m, and maximum takeoff weight of 16,500kg. The maximum speed of the aircraft is Mach 2 at high altitude, whereas the speed at low altitude is 1,400km/h.

JAS 39 Gripen E

The one seater aircraft features ten pylon stations, which enable it to carry reconnaissance pods, weapons and external fuel tanks. Its turnaround time is ten minutes in air-to-air configuration and 20 minutes while carrying weapons for air-to-ground combat.

The aircraft’s internal fuel tanks with a combined capacity of 3.4t are approximately 40% larger than those of its former version. The increased volume is made possible by moving the landing gear from the fuselage of the aircraft out to the inner wings.



The Gripen E features a digital state-of-the-art cockpit. The cockpit also features a hands-on-throttle-and-stick (HOTAS) which provides superior situational awareness for the pilot.

USE CC  button for subtitle 

AEL delivery to Saab’s first demo for the future of the Gripen NG WAD Brazil: Here


AEL Sistemas has launched the first panoramic panel of the Gripen fighter: Here


AEL Sistemas has launched the first panoramic panel of the Gripen fighter, reports​.

“We are proud to deliver the prototype panel on schedule, helping Saab engineers to move forward with the integration work on the aircraft,” says Sérgio Horta, president of AEL.

Saab selected AEL Sistemas (AEL) as a supplier in Brazil two years back for providing wide area display (WAD) and the head-up display (HUD). Both the WAD and HUD development programmes started in January 2015.

Saab and Embraer Inaugurate the Gripen Design and Development Network in Brazil: Here

Gripen E the Su-35 killer: Here

Highlights of above post:

“Simulation has the Gripen E shooting down the Su-35 at almost the same rate that the F-22 does. The Gripen E is estimated to be able to shoot down 1.6 Su-35s for every Gripen E lost, the F-22 is slightly better at 2.0 Su-35s shot down per F-22 lost. In turn the Su-35 is better than the F-35, shooting down 2.4 F-35s for each Su-35 shot down. The Su-35 slaughters the F-18 Super Hornet at the rate of eight to one, as per General Hostage’s comment. How that comes about is explained by the following graphic of instantaneous turn rate plotted against sustained turn rate:


Turning, and carrying a gun, remains as important as it has ever been. Most missiles miss in combat and the fighter aircraft will go on to the merge. Assuming that pilot skill is equal, a 2° per second advantage in sustained turn rate will enable the more agile fighter to dominate the engagement. A high instantaneous turn rate is vital in being able to dodge the air-to-air missiles in the first place. The aircraft on the upper right quadrant of the graph will have a higher survival rate. The ones on the lower left quadrant will produce more widows.”

Gripen operational cost lowest of all western fighters: Jane’s


“The operational cost of the Swedish Saab Gripen aircraft is the lowest among a flightline of modern fighters, confirmed a White Paper submitted by the respected international defense publishing group IHS Jane’s, in response to a study commissioned by Saab.


For the purpose of modeling to create a standard or benchmark, the study arrived at the ‘aircrafts’ fuel usage, hence cost, based on a theoretical one hour sortie at max dry thrust’, not ‘necessarily reflective of actual fuel consumption and hence fuel cost of a one hour sortie’.

As is evident, the modeled cost pattern is closest to the derived cost pattern in the case of the Gripen, F-16, Rafale, and Eurofighter. The research and the model digress in the case of the F-35 and the F/A-18.

In the case of the F-35, the study says the different ‘costs arise from the differing power and specific fuel consumptions of the A / C and B models. The B model is the top figure in both cases’. The study says, “The single P&W F-135 engine is relatively fuel efficient for its power, resulting in a lower fuel burn at maximum dry thrust than might be expected.” It adds that, although obviously, ‘accurate CPFH for in-service aircraft does not exist’, ‘the US and Australian forecast costs both suggest it will not offer lower CPFH than current aircraft’, considering ‘the aircraft itself is an extremely sophisticated design carrying a large number of new and unproven onboard systems’.”

Targo HMD for Gripen E/F: Details

b933a1375cbcbf55_800x800arPhotographer: Saab


  • More Intelligent
  • More Capable
  • More Affordable

Both Digital JHMCS and JHMCS II share common design attributes that are new and improved over classic JHMCS. Both include new features and benefits that reinforce our market leadership standing.



JHMCS was first in the market, first in combat. And now, the JHMCS II product line is the worlds first high definition HMD using smart-visor technology that operates in both day and night mode.



  • The JHMCS II product line (both Digital JHMCS and JHMCS II) is based on the combat proven JHMCS and is now more affordable
  • Both are priced to meet a broad range of market needs including reduced budget upgrades and new starts


  • JHMCS II product line takes advantage of pioneering technology
  • Digital image source replaces JHMCS Cathode Ray Tube (CRT)
  • No high voltage requirements
  • Reduced routine maintenance
  • Improved center of gravity provides greater pilot comfort, especially with NVGs
  • No visor trimming
  • Helmet borne electronics
  • Virtual HUD option
  • Embedded virtual training compatible
  • Pilot Health Monitoring including hypoxia and G-LOC detection and warning
  • Early pilot warning and aircraft recovery option


  • Both versions in our product line utilize conformal color symbology to improve situational awareness
  • Full color video imagery, FLIR and Picture-in-Picture
  • Color de-brief camera

  Advantage JHMCS

  • More flight crews fly JHMCS around the world
  • More crews have used JHMCS HMDs during combat operations

Additional features and benefits

  • The developers of JHMCS II have worked extensively with warfighters to create a system that improves situational awareness, provides improved comfort, better balance and easy day to night mode interchange.
  • With nearly 6,000 systems sold and 15 years of experience, JHMCS based products have a heritage of superior safety achievement, testing, and qualification certifications.
  • JHMCS II is fully interchangeable, retrofits perfectly with all components of JHMCS and is adaptable to any aircraft architecture.
  • Improvements include Flat Panel Display, Video, No High Voltage, Higher Reliability, Better Balance and higher accuracy with the new Forward Fit Opto-Inertial Tracker.
  • JHMCS II Can Be Pre-ordered Now.
  • JHMCS II Has The Best Warranty And Service Support In The Industry.


Weapons carried on the Gripen E

The air-to-air missiles on the Gripen E include infrared-guided short range IRIS-T missile, and the Meteor missile, which is a beyond visual range air-to-air missile (BVRAAM).

IRIS-T missile

iris-t.jpgIRIST-T Anti-Aircraft Missile off bore sight capability

The IRIS-T, InfraRed Imaging System – Tail/Thrust Vector Controlled, is an International initiative to replace current AIM-9L/M Sidewinder short-range, air-to-air missiles. The missile combines advanced aerodynamics and thrust vector control in a tail controlled airframe to achieve outstanding performance.


It utilizes a solid-propellant rocket motor. IRIS-T features a roll-pitch (128×128) IR seeker with �90� look angle for high off-boresight angle missile engagements. Engagements against targets in the rear hemisphere can be done successfully with the missile locked-on target after launch. IRIS-T outstanding agility is the key to successfully engage highly maneuverable advanced aircraft.

Overall, IRIS-T delivers increased agility, target acquisition range, hit accuracy, a more effective warhead and considerably improved protection against countermeasures compared with the Sidewinder missile. The mass, length, diameter and interface of the IRIS-T missile are very close to its predecessor achieving a high degree of compatibility which is a must for the IRIS-T program. During the flight tests, the IRIS-T achieved direct impact on the target even with IRCM (IR countermeasures) presence. The highly maneuverable IRIS-T missile will be integrated onto Typhoon, Gripen, F-16, Tornado, and F/A-18 aircraft. Dhiel BGT is the prime contractor for the program and Germany is the lead nation. Source

WEIGHT 87.4 kg
LENGTH 2936 mm / 2.9m
WARHEAD HE/Fragmentation
Impact and active radar proximity fuse

ENGINE Solid-fuel rocket
~25 km
FLIGHT ALTITUDE Sea level to 20,000 m
SPEED Mach 3
Infrared homing
Typhoon, Tornado, F-4, F-16,NASAMS, Gripen, F-18.

Specification source

Meteor missileMeteor-1

Meteor Beyond-Visual Range Air-to-Air Missile, Meteor is air ramjet-powered missile with advanced seeker technology that can fly at sustained high speeds, over long ranges and with great agility to defeat air-to-air threats range 100-300 km at over Mach 4

The aircraft also has the flexibility to be fitted with Sidewinder and A-Darter missiles to replace the IRIS-T, and the Advanced Medium Range Air-to-Air Missile (AMRAAM) missile to replace the Meteor. It can further be fitted with long range weapons such as R-Darter and Derby, and short range weapons such as ASRAAM and Python. It is guided by two-colour thermal imaging infrared homing with laser fuse. It features a multimode electronic counter countermeasures (ECCM) suite for higher view angles.


AIM9LAIM-9 Sidewinder (Rb.74) Anti-Aircraft Missile


The A-Darter is 2.98m (9.78ft) long and 0.16m (0.52ft) in diameter. It has four fixed delta control fins at the rear and two strakes along the sides. The missile weighs 90kg. It carries a high explosive (HE) warhead and has a range of ten kilometres.

It is powered by a solid propulsion system. The missile has a track rate of 120°/s and a seeker angle of 180° for countermeasure resistance. It also features lock-on after launch and memory tracking for higher range intercepts, and is compatible with Sidewinder stations. The tail-controlled AAM is powered by a boost-sustain rocket motor and uses thrust vector flight control. Its wingless airframe and low drag enable the A-Darter to have a higher range than the traditional SRAAMs. The missile system is designed with a highly agile airframe for close combat in electronic countermeasures (ECM) environments. Source

Advanced Medium Range Air-to-Air Missile


AIM-120 AMRAAM range 105-180 km at Mach 4


The R-Darter is a beyond visual range (BVR) air-to-air missile guided by an active radar homing seeker. It was designed and manufactured by the South African firm Kentron, now known as Denel Dynamics. The South African air-to-air missile program benefited from cooperation with Israel  during the 1980s and the R-Darter is very similar to the Python Derby. >60 km (>37 mi) Active radar homing guidance system.

Derby missile

Rafael introduces the I-Derby ER BVRAAM

The Derby missile is a medium-range active radar homing missile from Rafael’s Python family of missiles. The missile is basically an enlarged Python-4 with an active-radar seeker. It is similar to the AIM-120 AMRAAM. It has a range of 50km and can hit target at Mach 4.

ASRAAM (Advanced Short Range Air-to-Air Missile)

ASRAAM (Advanced Short Range Air-to-Air Missile) is the next generation infrared-guided missile designed and built by MBDA UK (formerly Matra BAe Dynamics) to provide enhanced aerial combat capabilities for fighter aircraft. The ASRAAM missile can be deployed to engage targets within visual range (WVR) combat operations. It offers high speed and exceptional agility during its flight time. It is capable of engaging targets under complex environmental conditions and is compatible with aircraft armed with Sidewinder or AMRAAM missiles. The ASRAAM weapon is guided by an advanced, accurate focal plane array Imaging Infra-Red (IIR) seeker developed by Raytheon. The passive homing guidance system provides the ability to significantly track, acquire and engage targets beyond visual range (BVR) under severe clutter and countermeasures environmental situations. A low signature rocket motor is fitted to drive the ASRAAM short range missile. It provides superior acceleration and range throughout the flight. The motor also allows ASRAAM to quickly intercept any target and gives it a speed of about Mach 3. Source


Python-5 is a fifth generation air-to-air missile (AAM) manufactured by Rafael Advanced Defense Systems. The missile can engage enemy aircraft from very short ranges and near beyond visual range. Python-5 is the most accurate and reliable AAM of the Israeli Air Force and one of the most sophisticated guided missiles in the world. Python-5 features a new electro-optical infrared seeker with high off-boresight capability. The infrared seeker scans the target area for the threat and locks-on for terminal chase after the target is identified. Python-5 is also equipped with lock-on-before launch (LOBL) and lock-on-after launch (LOAL) capabilities. In LOAL mode, the target information is transmitted from the launch aircraft to the missile. Python-5 is powered by a solid propellant rocket engine. The propulsion system provides a speed of Mach 4 and an operational range of more than 20km. Source

The Gripen E can also be integrated with a number of air-to-surface weapons including unguided Mk82, Mk83 and Mk84 bombs, laser-guided bombs such as GBU-12, GBU-16 and GBU-10, and advanced bombs such as GBU-49 and GBU-39. Air-to-surface missiles such as RBS15F ER, TAURUS KEPD 350, AGM-65 Maverick, and MBDA’s dual-mode Brimstone (DMB) can also be integrated into the Gripen E.

GBU-10/12/16 Paveway II laser-guided bomb

GBU-10/12/16 Paveway II laser-guided bomb

GBU-49 and GBU-39 

gbu-50Advanced bombs such as GBU-49 and GBU-39

RBS15 Air-to-surface missiles

Air-to-surface missiles such as RBS15

Saab to upgrade RBS-15 system with enhanced combat range and an upgraded target seeker: Here


Announced on 31 March, the deal will deliver weapons with “greatly improved capabilities to engage any target, in all [weather] conditions”, says Saab chief executive Håkan Buskhe. Equipped with an upgraded seeker, the RBS15F ER will have a reduced launch weight and increased range compared with earlier versions of the maritime- and land-attack missile.

The extended-range design will be among a variety of weapon types to be carried by the Gripen E, which is scheduled for delivery to the Swedish air force from 2019. Others include MBDA’s Meteor beyond visual-range air-to-air missile, which entered service with its MS20 operating standard Gripen Cs last year, and Diehl Defence’s short-range IRIS-T.

Saab lists the 4.35m (14.3ft)-long, sea-skimming RBS15F ER as weighing around 600kg (1,320lb), including a 200kg warhead. It cites an operational range of more than 108nm (200km).

Taurus KEPD 350 is a German/Swedish air-launched cruise missile

Type Long-range air-to-surface missile
Service history
In service 2005
Production history
Manufacturer Taurus Systems GmbH
Unit cost  950,000
Weight 1,400 kg
Length 5.1 m
Diameter 1.08 m
Warhead 481 kg, Mephisto (Multi-Effect Penetrator, HIghSophisticated      and TargetOptimised)
Engine Williams P8300-15 Turbofan
Wingspan 2.064 m
over 500 km
Flight altitude 30–40 m
Speed Mach 0.80~0.95
IBN (Image Based Navigation), INS (Inertial navigation system), TRN (Terrain Referenced Navigation) and MIL-GPS (Global Positioning System)
Integrated: TornadoF/A-18F-15K
(Tested: GripenTyphoon)

 Taurus KEPD 350 is a German/Swedish air-launched cruise missile, manufactured by Taurus Systems and used by Germany and Spain Range over 500 km at speed Mach 0.8 – 0.95

Maverick air-to-surface missile


The AGM-65 Maverick is a tactical, air-to-surface guided missile designed for close air support, interdiction and defense suppression mission. It provides stand-off capability and high probability of strike against a wide range of tactical targets, including armor, air defenses, ships, transportation equipment and fuel storage facilities. Maverick was used during Operation Desert Storm and, according to the Air Force, hit 85 percent of its targets.

Primary Function: Air-to-surface guided missile
Contractors: Hughes Aircraft Co., Raytheon Co.
Power Plant: Thiokol TX-481 solid-propellant rocket motor
Autopilot Proportional Navigation
Stabilizer Wings/Flippers
Propulsion Boost Sustain
Variant AGM-65A/B AGM-65D AGM-65G AGM-65E AGM-65F
Service Air Force Marine Corps Navy
Launch Weight: 462 lbs(207.90 kg) 485 lbs(218.25 kg) 670 lbs(301.50 kg) 630 lbs(286 kg) 670 lbs(301.50 kg)
Diameter: 1 foot (30.48 centimeters)
Wingspan: 2 feet, 4 inches (71.12 centimeters)
Range: 17+ miles (12 nautical miles/27 km)
Speed: 1150 km/h
Guidance System: electro-optical television imaging infrared Laser infrared homing
Warhead: 125 pounds(56.25 kilograms)cone shaped 300 pounds(135 kilograms)delayed-fuse penetrator, heavyweight 125 pounds(56.25 kilograms)cone shaped 300 pounds(135 kilograms)delayed-fuse penetrator, heavyweight
Explosive 86 lbs. Comp B 80 lbs. PBX(AF)-108
Fuse Contact FMU-135/B
COSTS Air ForceAGM-65D/G NavyAGM-65E/F
Date Deployed: August 1972 February 1986 1989
Aircraft: A-10, F-15E and F-16 F/A-18 F/A-18 and AV-8B

AGM-65 Maverick data

Brimstone anti-armour missile system

Brimstone anti-armour missile system

MAR-1 air-to-surface( ASM) and surface-to-surface (SSM) anti-radiation missile (ARM)


The MAR-1 is an air-to-surface( ASM) and surface-to-surface (SSM) anti-radiation missile (ARM) with INS/GPS capability under development by Brazil’s Mectron and the Aerospace Technology and Science Department (Departamento de Ciência e Tecnologia Aeroespacial, DCTA) of the Brazilian Air Force. It is designed to suppress enemy air defenses (SEAD) by targeting surveillance radars and fire-control radars. 60 to 100km (Seen here on static display Gripen E) (See Missile details below)

The aircraft features a 27mm all-purpose Mauser BK27 high velocity gun providing both air-to-air and air-to-surface attack capability.

Mauser BK27 high velocity gun

27mm all-purpose Mauser BK27 high velocity gun

This 27mm cannon is a single barrel, gas-operated lightweight single barrel revolver cannon that fires electrically primed 27×145 mm ammunition at 1 700 rounds per minute.

Developed by Mauser-Werke Oberndorf of Germany, it’s features include low volume, low system weight, high fire power in target (air/air, air/ground), low time of flight projectile and a long stand-off range.

The cannon is relatively lightweight at only around 100 kg including barrel, but with a natural rate of fire of approximately 1700 rounds per minute (instantaneous time to rate), the relatively large shell (260g) and the high muzzle velocity of just over 1 km/s (v0) it packs a punch. The cartridge is ignited electrically and fed to the cylinder through linked belts or, in the case of the Eurofighter, through a linkless conveyor belt ammunition feed system, the first such system for revolver guns. Linkless systems (which are a staple in modern Gatling-type cannons) are less prone to stoppage and the ammunition uses considerably less space.

The different types of ammunition all have the same internal and external ballistic properties allowing for the use of belts with mixed ammunition for greater flexibility.

Ammunition types:
High explosive

Armour piercing
Armour piercing high explosive

All purpose
Semi Armour Piercing High Explosive

Target Practice Target Practice Frangible Projectile
Target Practice Tracer

Used by:
Gripen (fuselage x 1)


Update – Rheinmetall to equip Saab Gripen NG fighter jets with upgraded BK27 cannon: HERE

It is also equipped with a missile approach warning (MAW) system and is capable of carrying more chaff packets and flares compared to similar aircraft, enhancing its survivability.

Gripen E’s radars, sensors and communication systems

The Gripen E is fitted with Selex’s ES-05 Raven active electronically scanned array (AESA) radar system. Fitted on a swashplate at the nose of the aircraft, the radar provides an angular field of view of 100° and look behind capability.

Selex’s ES-05 Raven active electronically scanned array (AESA) radar system


The Gripen takes it one step further by mounting the radar on a “repositioner” that allows +/-100° scan angle.  Typically, AESA radars are fixed, and “steered” virtually.  It’s simpler than it sounds.  Here is the Gripen E’s radar:


Advantage of swashed plate array of RAVEN ES-05 radar

In long-range air-to-air combat, the highest FoV means that a Gripen can maneuver at an angle in relation to the viewed axis of the target (off-boresight angle) greater than what is possible with an AESA radar with fixed TRMs matrix after launching a BVR missile and still be able to send updated information to the missile. In turn, a potential enemy will be limited to deviating up to 60º of the viewed angle after launching the BVR missile. Therefore, it will still be displacing towards a missile launched by Gripen while this, in turn, will be flying perpendicularly or even away from the enemy missile. Simulations made showed that this capacity should not be underestimated and it will have a devastating effect in the engagement result of the BVR. Source




Foto1ArgentinaGripenNG.JAS 39 Gripen E

In a dogfight, the air-to-air WVR (Within Visual Range), the repositioning capacity of the antenna with Swashplate will enable the detection of targets “over the shoulder” of the pilot, together with helmet mounted sight and next generation air-to-air WVR missiles, with high maneuverability, will offer the Gripen NG pilot even more advantages. Source

General data:
Type: Radar Altitude Max: 0 m
Range Max: 222.2 km Altitude Min: 0 m
Range Min: 0.6 km Generation: Late 2010s
Properties: Identification Friend or Foe (IFF) [Side Info], Track While Scan (TWS), Pulse Doppler Radar (Full LDSD Capability), Active Electronically Scanned Array (AESA)
Sensors / EW:
PS-05/A Mk4 AESA [ES-05 Raven] – Radar
Role: Radar, FCR, Air-to-Air & Air-to-Surface, Medium-Range
Max Range: 222.2 km


The passive Infrared Search and Track (IRST) sensor system fitted to the aircraft is the Skyward G supplied by Selex. It is also mounted on the nose of the aircraft and does not emit signals. The aircraft is further fitted with a passively listening advanced electronic warfare (EW) system.


ir-otis3-638x368Gripen E’s built-in IRST located at the base of the windscreen

The Gripen E’s built-in IRST is also in a more traditional location at the base of the windscreen.  This allows it to mimic the pilot’s head movement more accurately so it can project the image on the pilot’s HMD.

Untitled5Selex ES SKYWARD-G IRST for GRIPEN E. (Photo: Finmeccanica)
General data:
Type: Infrared Altitude Max: 0 m
Range Max: 185.2 km Altitude Min: 0 m
Range Min: 0 km Generation: Infrared, 3rd Generation Imaging (2000s/2010s, Impr LANTIRN, Litening II/III, ATFLIR)
Properties: Identification Friend or Foe (IFF) [Side Info], Classification [Class Info] / Brilliant Weapon [Automatic Target Aquisition], Continous Tracking Capability [Visual]
Sensors / EW:
Skyward-G – (Gripen-NG) Infrared
Role: IRST, Imaging Infrared Seach and Track
Max Range: 185.2 km



Finmeccanica– Selex ES also provides the fighter aircraft with the Raven ES-05 AESA (active electronically scanned array). Finmeccanica – Selex ES’s participation in the Gripen NG programme dates back to 2009, when an agreement was signed with Saab for the development of the Raven ES AESA radar. This was followed in 2010 by the selection of the Skyward-G IRST sensor and the IFF system.

radar-Raven-ES-05-com-Skyguard-no-alto-Laad-2011-foto-Nunão-Poder-AéreoRaven ES AESA radar and Skyward-G IRST sensor

Skyward-G InfraRed Search and Track (IRST) Skyward for SAAB’s Gripen E. The new systems will equip the Swedish Air Force’s Gripen E fleet. Saab is developing the new version for the Swedish Air Force. Skyward-G can silently detect threats, at beyond-visual range without relying on active (radar) emissions that could betray the aircraft’s intentions and position to hostile forces. With the IRST a Gripen can detect and track enemy targets, including aircraft, naval vessels and ground vehicles. The system can also complement the radar by tracking the heat signatures of stealthy targets that are not visible or trackable by radar.

Finmeccanica, through its Airborne and Space Systems division, has signed contracts to provide Identification, Friend or Foe (IFF) systems for the Gripen Next Generation (Gripen NG) aircraft earmarked for the Air Forces of Sweden and Brazil.

JAS 39 Gripen E Brazilian Air Force

Mode 5 M428 transponder

Mode 5 M428 model

The systems will be used by Gripen pilots to identify other aircraft or vehicles as friendly (or potentially unfriendly) and to determine their bearing and range from the aircraft. Independent from the Gripen NG’s radar and other sensors, the system can look in a different direction, allowing the pilot to use the radar to queue-up targets for subsequent identification. Of particular note, the system’s separate antennas give it a wide, more-than 180 degree field of regard, providing operational benefits.

Each complete system consists of a transponder and an interrogator. Also included is a crypto customised in accordance with customer requirements. The transponder, which is the company’s Mode 5 M428 model, is the same being offered to the UK MoD to address NATO’s requirement for a new standard of IFF across all platforms. Source

Gripen E’s gets new electronic warfare (EW) system: Here



The Gripen E’s new EW system uses three types of signal generators to obscure the existence of the aircraft or cause confusion about its location and/or existence so that an adversary cannot choose a proper firing solution. The three types of signal generators are Digital Radio Frequency Memory (DRFM), Doppler, and Noise. DRFM emulates the signal of the radar that makes contact with the aircraft and then mirrors it back so that it appears to the operator on the other side that the radar has encountered nothing.

Saab’s Arexis family of EW products in final development: Here

Photo courtesy of Saab


Saab Defense reported Wednesday that it is in the final stages of development of a new family of Electronic Warfare self-protection systems.

The systems include a new advanced electronic attack jammer pod, Saab said in a press release. It can protect aircraft strike formations from low-frequency radars is on display at a defense and security exhibition in Britain.

One version of Arexis is the on-board EW suite on new versions of Gripen E/F fighters, according to the company.

BriteCloud Expendable Active Decoy (EAD)

In addition, Saab is also offering the BriteCloud Expendable Active Decoy (EAD) as an electronic warfare option for the Gripen E.

BriteCloud_Exploded_725BriteCloud is a self-contained digital radio frequency memory (DRFM) jammer that is designed to protect fighter jets from complex threats such as RF-guided missiles and fire-control radars. Illustration: Selex ES 

BriteCloud is a self-contained digital radio frequency memory (DRFM) jammer that is designed to protect fighter jets from complex threats such as RF-guided missiles and fire-control radars. After manual or automatic ejection from a standard chaff and flare dispenser, BriteCloud detects RF emissions and cross-references them against its pre-programmed threat library. Upon finding a match, the decoy applies advanced algorithms and emits a deception signal to defeat the threat radar and incoming missile so that the aircraft is able to carry on safely and concentrate on its mission. Source

Elisra passive airborne warning system (PAWS-2)


The Elisra passive airborne warning system (PAWS-2) has been selected for the Gripen fighter. Elbit, Elisra’s parent Israeli company, said that the system was selected “following a comprehensive in-depth evaluation and testing in various scenarios as well as in a comparative live fire test.”

The missile approach warning function on the Gripen has previously been provided by Saab itself, as part of the Swedish company’s Integrated Defensive Aids System (IDAS) that has also been installed on other combat aircraft, helicopters and airlifters. IDAS includes the MAW-300, which employs ultraviolet (UV) sensors, whereas PAWS-2 is an infrared (IR) system. Elbit said that PAWS-2 is based on years of experience and has growth potential “to cope with ever-growing future requirements expected during the life-cycle of the Gripen fighter system.”

A Saab spokesman told AIN that PAWS-2 would be the baseline fit for all future Gripens but that individual customers would be free to select and integrate alternatives. The Gripen has just been chosen by Brazil, and Saab is currently campaigning to sell the fighter to Malaysia and Switzerland, having secured an order for 60 from the Swedish air force. The Swedish aircraft will be converted from Gripen Cs that are already in service. Switzerland will get 22 new aircraft, if a nationwide referendum next year confirms the purchase. Source



A01157625130914110001Royal Thai Air Force Net Work Centric Based on Saab Systems (Example)

Together with proven Network Centric Warfare capabilities including advanced data communications, dual data links, satellite communications and video links  on-board sensors, in combination with HMD/NVG, deliver the ability to detect and destroy a wide variety of targets, even at night or in poor weather conditions.


The Gripen data link system (TIDLS), along with a Link 16 or National Data Link provide the following capabilities:

  • Data link within the Tactical Air Unit
  • Data link between Gripen. AEW&C and C2 centries on ground or at sea
  • Data link with Forward Air Controller

Rafael’s Litening III Laser Designation Pod (LDP) is fitted to the aircraft for attacking ground targets using laser-guided bombs. The LDP also integrates a forward looking infrared (FLIR) sensor and a charge-coupled device (CCD) camera.

Rafael’s Litening III Laser Designation Pod (LDP)

Rafael’s Litening III Laser Designation Pod (LDP) on Gripen 39C

The Gripen E can be optionally fitted with different pod systems including Saab’s own Modular Reconnaissance Pod System (MRPS), Rafael’s Reccelite and Thales’ digital joint reconnaissance pod (DJRP).

Modular Reconnaissance Pod System (MRPS)

Saab’s own Modular Reconnaissance Pod System (MRPS) on Gripen 39C

The most important equipment for JAS 39 Gripen when it is used in reconnaissance duties is the MPRS “recce pod” which in the Swedish Air Force has the designation SPK 39 (Spaningskapsel 39). It is a pod hanging in the centreline under the aircraft. SaabTech is responsible for the development of the system. The pod itself is bought from Terma A/S in Denmark. Swedish Aerotech Teleub is an important subcontractor.

The Modular Reconnaissance Pod System (MPRS) is designed for autonomous operation with an internally integrated Environment Control System. A Reconnaissance Management System (RSM) and a Control Display Unit (CUD) are basic parts of the system.

The reconnaissance vided mid-section is able to accommodate advanced sensors suitable for missions at any altitpayload includes (sensors, the Digital Mass Memory (DMM) and a Common Data Link (CDL), are housed in three main compartments in the pod. The rotating window-proude. The forward and aft compartments of the pod houses DMM, data link equipment and additional sensors as applicable. Source

RecceLite reconnaissande pod

Close-up photo of RecceLite reconnaissande pod mounted on JAS 39D

Thales Digital Joint Reconnaissance Pod

Thales Digital Joint Reconnaissance Pod – Purchased for use on the Gripen, the British-built Thales Digital Joint Reconnaissance Pod provides a wide-area reconnaissance capability in a pod operating with electro-optical and infrared sensors. The Digital Joint Reconnaissance Pod (DJRP) provides Day/Night, low to medium level and real time recce capability. Seen here on JAS 39C. Source

The aircraft can be fitted with regular radios, Havequick/SATURN frequency hopping secure radio, long distance satellite communication systems including the Link 16 for wide-area command and control (C2), which is compatible with FLORAKO radar system.

The aircraft is also fitted with a ground data link called ROVER, which provides communication to a Forward Air Controller (FAC) or Joint Terminal Attack Controller (JTAC) on the ground.

JAS 39 Gripen E

GE F414G engine for Gripen E

New air intake


Gripen E increase the air intake in order to adapt to the F414 engine, and in order to active phased array radar radiating in the tail root added a new two level environmental control system (ECS). The modified tip integrated electronic warfare antennas new. Source


The Gripen E is driven by General Electric’s (GE) F414G turbofan engine rated at 22,000lbs (98kN). It features a new high-pressure turbine and a new six-stage, high-pressure compressor.

General Electric’s (GE) F414G turbofan engine

csm_F414_Main_784d69ce2fF414G has 96kN (22,000lb) thrust

Manufacturer: General Electric Co.
Thrust: 22,000 pounds
Overall Pressure Ratio at Maximum Power: 30
Thrust-to-Weight Ratio: 9
Compressor: Two-spool, axial flow, three-stage fan
LP-HP Compressor Stages: 0-7
HP-LP Turbine Stages: 1-1
Combustor Type: Annular
Engine Control: FADEC
Length: 154 in (3.91 m)
Diameter: 35 in (88.9 cm)
Dry Weight: 2,445 lbs (1,109 kg)

GE was awarded a $250m contract by the Government of Switzerland in December 2011 to supply the engines for the Gripen E. The aircraft’s engine and design enable it to fly at supersonic speed without the use of an afterburner, thus saving more fuel and enabling it to stay longer in the air.

Gripen E orders and deliveries

Orders for the new generation aircraft for Sweden are based on the initial agreements signed between Saab and Swedish Defence Materiel Administration (FMV) in February and March 2012. The agreement calls for the modification of 60 Gripen C aircraft to Gripen E configuration for Sweden from 2013 to 2026. Three development orders under the agreement have been made and the remaining orders are expected in 2014. The total value of the orders under the agreement is estimated to be SEK47.2bn ($7.4bn).

Main material Source


Updated Jan 02, 2018


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.