168890_boeing_fa-18f_super_hornet_united_states_navy_14714162353

F/A-18E/F Super Hornet Strike Aircraft

The US Navy F/A-18 E and F Super Hornet maritime strike attack aircraft, manufactured by Boeing, flew for the first time on November 29 1995. The Super Hornet is about 25% larger than its predecessor, the F/A-18C/D, but contains 42% fewer structural parts. The single-seat F/A-18/E and the two-seat F/A-18/F fly greater ranges with heavier payloads, have more powerful engines and provide greater survivability.

f18comp

For reference see CF-18 Hornet: Details

bagotville-cf-18s-bn2006-0060-05aCF-18A

F/A-18 Super Hornet orders and deliveries

The first low-rate initial production aircraft was delivered in December 1998, and all 12 of the first batch were delivered by November 1999.

In February 1999, the US Navy placed an order for 30 Super Hornets, in addition to the 12 already ordered. Following successful completion of operational evaluation, in June 2000 the USN ordered 222 fighters to be produced over five years.

f18_superhornet

The first full-rate production aircraft was delivered in September 2001.

A second multi-year contract was signed in January 2004 for 42 aircraft to be purchased between 2005 and 2009. Total requirement was for at least 545 aircraft. Over 500 aircraft had been delivered by April 2011.

Super Hornet programme and development

In July 2002, the F/A-18E/F began its maiden operational deployment on board USS Abraham Lincoln (CVN 72). In November 2002, the aircraft made its combat entry, striking air defence sites in Southern Iraq with Joint Direct Attack Munitions (JDAM). The aircraft was also deployed as part of Operation Iraqi Freedom in March 2003.

superchart

Improvements scheduled for Block 2 aircraft include a redesigned forward fuselage which has fewer parts and changes to the aircraft’s nose to accommodate the Raytheon APG-79 Active Electronically Scanned Array (AESA) radar. The first aircraft was delivered in September 2003.

The aircraft is fitted with new mission computers, fibre-optic network, Raytheon AN/ASQ-228 ATFLIR targeting pod, Boeing joint helmet-mounted cueing system and Raytheon AIM-9X next generation Sidewinder air-to-air missile.

In April 2007, Boeing announced that it had been asked by the US Navy to provide an Infrared Search and Track (IRST) system for the F/A-18E/F. Boeing has selected Lockheed Martin Missiles and Fire Control to supply the system. In November 2011, the US Navy awarded a $135m contract for engineering and manufacturing development of the IRST sensor system. The IRST system is expected to achieve initial operating capability by 2016.

U.S. Navy Purchases F/A-18E/F Infrared Search and Track Systems

The Boeing Co., St. Louis, is being awarded an $82,084,777 fixed-price-incentive-firm contract for the procurement of 12 low-rate initial production infrared search and track (IRST) systems for the F/A-18E/F aircraft. The IRST system is a long-wave infrared detection system that targets airborne vehicles in a radar-denied environment. Work will be performed in Orlando, Florida (50 percent); St. Louis (38 percent); Santa Ana, California (7 percent); and Irvine, California (5 percent). It is expected to be complete in January 2020. Fiscal 2016 aircraft procurement (Navy) funds in the amount of $82,084,777 are being obligated on this award, none of which will expire at the end of the current fiscal year. This contract was not competitively procured pursuant to 10 U.S. Code 2304( c)(1). The Naval Air Systems Command, Patuxent River, Maryland, is the contracting activity (N00019-17-C-0026). Source afcea.org

F/A-18E/F Infrared Search and Track System

AN/AAS-42 system

irstaas42F-14D AAS-42 – Image: sistemasdearmas.com.br

Lockheed Martin’s IRST is a development of the AN/AAS-42 system that was originally carried by Northrop Grumman F-14D Tomcats. However, it has been undergoing development since then, first for the abortive pod-mounted system for the F-15 Eagle, and now further refined for the Super Hornet application. Source ainonline.com

irst10IRST21 Sensor System – Image: lockheedmartin.com20fs0pf

Features

  • Long-range infrared scan and detection of airborne threats
  • Passive detection and ranging
  • Large field of regard
  • Immune to electronic deception
  • Programmable scan modes
  • Low false-alarm rate
  • Automatic target detection algorithms
  • Multiple mounting options

mfc_irst

Source PDF lockheedmartin.com

m02010102300005Image: deagel.com

The F/A-18E/F IRST system is installed in the nose section of the centerline fuel tank on the aircraft. The IRST is the next generation of the F-14D AN/AAS-42 IRST that accumulated over 200,000 flight hours aboard US aircraft carriers. Boeing awarded the technology development contract to Lockheed Martin in May 2009. The US Navy has a requirement for 150 IRST systems with first deliveries due in 2011.

The new IRST technology developed by Lockheed Martin features high resolution providing dramatically improved raid cell count at maximum ranges. Compared to a radar at a maximum range the IRST is 40 times more accurate. The information gathered by the new sensor can stand alone or be fused with other sensor data to enhance situational awareness, ensuring first-to-see, first-to-shoot capability. It also enhances the engagement range of high performance air-to-air missiles such as the AIM-120 AMRAAM. The IRST has been designed to complement the latest generations of tactical radars providing long-range detection of airborne targets with low false alarms under subsonic and supersonic speed and clutter backgrounds such as blue sky to severe mountain and urban terrain. An additional benefit is that the IRST systems are effective against low radar cross section targets while reducing the threat posed by anti-radiation missiles and radar warners. Source deagel.com

m02010102300006F/A-18E/F IRST system – Image: deagel.com

In February 2007, Australia requested the FMS of 24 F/A-18F Block 2 aircraft. The contract was placed in May 2007. The first five aircraft were delivered in March 2010 and and rest of them were delivered by October 2011. The F/A-18F Block 2 aircraft cover the capability gap between the retirement of the F-111s in December 2010 and the delivery of the first F-35 Joint Strike Fighter to Australia in 2013.

The US Navy has approved System Development & Demonstration (SD&D) for an electronic attack version of the Super Hornet, the EA-18G, to replace the EA-6B Prowler. The EA-18G incorporates the Improved Capability III (ICAP III) suite developed for the Prowler. Two SDD aircraft were delivered. First flight of the EA-18G was in August 2006.

EA-18G Growler: Details

EA-18G

In May 2009, Boeing received a contract worth $48.9m for the development of Distributed Targeting (DT) system for super hornet aircraft.

In November 2011, the US Navy awarded a $48m contract to develop the Type 4 Advanced Mission Computer (AMC) for F/A-18E/F Super Hornet, which will replace the Type 3 AMC currently in use. It is expected to be completed by 2012.

Type 4 Advanced Mission Computer (AMC)

advanced-mission-computer-amc

Boeing will collaboratively develop a new mission computer for the F/A-18E/F Super Hornet and EA-18G Growler following a contract awarded by the US Navy. According to a company statement issued on 10 November 2011, Boeing received the $48 million contract for the Type 4 Advanced Mission Computer (AMC).

The Type 4 Advanced Mission Computer (AMC) will replace the current Type 3 on the Super Hornet and Growler aircraft, both of which are manufactured by Boeing. The company said that the new hardware will increase aircraft performance, address obsolescence issues, and improve image- and mission-processing functions, ‘increasing warfighter capabilities for both domestic and international customers’.

The system will also better position the aircraft for future Navy Flightplan capability upgrades, which will see the US Navy ensure that the Super Hornet and Growler remain ahead of future threats. Boeing expects a production contract during 2012. Source shephardmedia.com

In September 2011, Boeing and the US Navy proposed to offer F/A-18E Super Hornet Block II version aircraft to the Japan Air Self Defence Force (JASDF).

In September 2011, the US Navy awarded a $5.297bn contract that includes delivery of 66 Super Hornet aircraft between 2012 and 2015.

F/A-18 cockpit

4222f331aa1c9d11377ad7bf4e4e5037

The cockpit in the F/A-18E/F is equipped with a touch-sensitive control display, a larger multi-purpose liquid crystal colour display, which shows tactical information, two monochrome displays and a new engine fuel display. The aircraft retains the mission software and a high proportion of the avionics found in the C/D models.

1168906Front seat 

Honeywell AMPD 5-by-5-inch display

Honeywell AMFD 16 Sept 2014.jpg.scale.LARGE.jpg

The AMPD rugged display family consists of 5-by-5-inch forward avionics displays; 5-by-5-inch aft displays, and 8-by-10-inch avionics displays.

The AMPD replaces obsolete cathode ray tube (CRT)-based displays in legacy aircraft, and uses state-of-the-art active matrix liquid crystal display (AMLCD) technology.

The displays are full color, high density, and can be used during the day, at night, and with the night vision imaging system (NVIS). Of the AMPD family, the 5-by-5-inch versions are for the F/A-18E/F/G models, and the 8-by-10-inch versions are for the F/A-18F/G aft cockpit. The 8-by-10-inch model includes a direct digital video input.

The displays provide symbology, raster, and hybrid display formats, and support mono and full-color modes. Source militaryaerospace.com

The cockpit also has a colour digital map and the pilots are equipped with night-vision goggles. The zero/zero ejection seat is the SJU-5/6 from Martin Baker Aircraft Company Ltd in the UK.

Super Hornet weapons

4292

The Super Hornet has 11 weapon stations which include two additional wing store stations and will support a full range of armaments including AIM-9 Sidewinder, AIM-7 Sparrow and AIM-120 AMRAAM air-to-air missiles, guided air-to-ground weapons such as Harpoon, SLAM/SLAM-ER, GBU-10, GBU-51, HARM and Maverick; and free-fall air-to-ground bombs, Mk-76, BDU-48, Mk-82LD, Mk-82HD and Mk-84. The aircraft can also carry the GPS- / inertially guided JDAM (Joint Direct Attack Munition), JSOW (joint stand-off weapon) and JASSM (joint air-to-surface stand-off missile).

Weapon pylon

fa-18e_165898_12_of_20F-18E – Image: michael_blockbugloadout22

Boeing is the prime contractor for the Joint Helmet-Mounted Cueing System (JHMCS) for the Super Hornet, to be fitted to Block 2 and retrofitted to Block 1 aircraft. Vision Systems International (jointly owned by Kaiser and Elbit) is the major subcontractor. JHMCS is currently in full-rate production. Deliveries of full-rate production systems began in 2005, although the system was deployed operationally during Operation Iraqi Freedom.

Joint Helmet-Mounted Cueing System (JHMCS)

The F/A-18E/F new lightweight gun system is the General Dynamics M61A2 20mm Gatling gun, which has a switchable firing rate of 4,000 or 6,000 shots a minute and a fully integrated linkless ammunition feed system.

Armament/Weapons:

Main Gun: 1x M61A1/A2 Vulcan 20mm gatling gun with 578 rounds;
4x AIM-9 Sidewinder (AIM-9X projected) + 2x AIM-120 AMRAAM; or 6x AIM-120 AMRAAM.
Other Weapons Carried: AGM-65 Maverick; AGM-84 Harpoon, SLAM, SLAM-ER; AGM-88 HARM/AARGM;
AGM-154 JSOW; AGM-158 JASSM; GBU-38 500-pound Joint Direct Attack Munition (JDAM);
GBU-31 2,000-pound Joint Direct Attack Munition (JDAM); Mk 82/84 General Purpose Bombs;
CBU-87 1,000-pound Combined Effects Munition; CBU-89 GATOR Mine System; CBU-97 1,000-pound Sensor Fuzed Weapon;
GBU-10 2,000-pound Paveway II; GBU-12 500-pound Paveway II; GBU-16 1,000-pound Paveway II;
GBU-24 2,000-pound Paveway III laser-guided bomb; Mk 62/63 Quickstrike Naval Mines.

Source fi-aeroweb.com

1x M61A1/A2 Vulcan 20mm gatling gun

media-arts-animation-m61-a-cannon-render-4

The M61A1 and M61A2 produced by General Dynamics Ordnance and Tactical Systems are externally powered six-barrel 20mm Gatling gun systems that offer lightweight, highly lethal combat support for a variety of air, land and sea platforms.

The M61A1 and M61A2 increases multiple-hit probabilities when compared to single barrel guns operating at lower rates of fire. The M61A1 and M61A2 weapons are based on the proven Gatling principle of operation and provide reliability up to 10 times greater than single-barrel guns.

The M61A2 shares the same features as the M61A1, but is 20 percent lighter. The M61A2 will meet or exceed the M61A1 gun’s reliability, maintainability and supportability features. It is now available for applications where weapon system weight reduction is critical.

Specifications

Gun type Six-barrel, 20mm, externally powered
Weight

M61A1

M61A2

248 pounds (112.5 kg)

202 pounds (light barrel), 228 pounds
(heavy barrel) (91.6, 103.4 kg)

Rate of fire 4,000/6,000 shots per minute
Dispersion 8 milliradians diameter, 80 percent circle
Muzzle velocity 3,380 feet (1,030m) per second
Average recoil force

@ 4,000 shots per minute

@ 6,000 shots per minute

Rotary, linkless, closed loop

2,133 pounds (9.4 kN)

3,200 pounds (14.2 kN)

Drive system Hydraulic, electric, pneumatic

Source gd-ots.com

AIM-9M Sidewinder missile

Sidewinder AIM-9M

The Lima was followed in production in 1982 by the AIM-9M, which is essentially an improved AIM-9L. The Mike has improved background rejection, counter-countermeasures capability and a low smoke motor to reduce the visual signature of the inbound weapon. The AIM-9M has the all-aspect capability of the AIM-9L model, but provides all-around higher performance. The M model has infra-red countermeasures, enhanced background discrimination capability, and a reduced-smoke rocket motor. Deliveries of the initial AIM-9M-1 began in 1982. The only changes from the AIM-9L to the AIM-9M were related to the Raytheon Guidance Control Section (GCS). Several models were introduced in pairs with even numbers designating US Navy versions and odd for US Air Force. All AIM-9M GCS are comprised of three major assemblies; a seeker assembly for detecting and tracking the target; an electronics assembly for processing detected target information; and a servo assembly that transforms electrical tracking signals to mechanical movement of the fins. An umbilical cable assembly provides electrical interface between the missile GCS and the aircraft launcher. The umbilical I-3 cable also allows the flow of coolant from the LAU-7 to the missile GCS. AIM-9M GCS versions include the WGU-4A/B used in the AIM-9M-1 and AIM-9M-3, the WGU-4C/B used in the AIM-9M-4, the WGU-4D/B used in the AIM-9M-6, and the WGU-4E/B GCS used in the AIM-9M-8. The WGU-4E/B GCS uses advanced technology that has evolved through the WGU-4D/B development, while expanding the potential of the IRCM detection circuitry and improving the missile’s capability with respect to tactical IRCM deployment. Source scramble.nl

AIM-120 AMRAAM

59b73e780a816ca18912abf3b75aad1b

The AIM-120 AMRAAM (Advanced Medium-Range Air-to-Air Missile) is one of the most modern, powerful, and widely used air-to-air missiles in the entire world. After it entered limited service in 1991, this missile has been exported to about 35 countries around the world, where it has certainly been proven with over 3 900 test shots and 10 combat victories.

By the 1980s, the US deemed its current stock of air-to-air missiles, particularly the medium-range AIM-7 Sparrow, were obsolete, or at least not as capable as the latest Soviet missiles of the time. While the Sparrow was effective, with about 60 kills, it was not effective enough. In particular, it had one crushing fault—it was not fire-and-forget, meaning that the pilot was forced to remain on the scene and in danger until the missile reached its target. So, development of the AIM-120 AMRAAM began, along with European development of a short-range missile, resulting in the ASRAAM. In 1991, the AMRAAM entered limited service in the US Air Force. Two years later, it was fully operational there as well as the US Navy, while other countries started to show considerable interest.

ord_aim-120a_amraam_vs_aim-7_engagement_envelopes_lgImage: defenceindustrydaily.com
Country of origin United States
Entered service 1991
Missile
Missile length 3.66 m
Missile diameter 0.18 m
Fin span 0.53 m
Missile launch weight 150.75 kg
Warhead weight 22.7 kg
Warhead type HE blast-fragmentation
Range of fire up to 75 km
Guidance active radar homing

Source military-today.com

Super-Hornet-Farnborough-2008

AGM-65 Maverick

AGM-84 Harpoon, SLAM, SLAM-ER

himars-mlrs-3d-model-obj-fbx-blend-dae-mtl-x3d

The Harpoon missile provides the Navy and the Air Force with a common missile for air, ship, and submarine launches. The weapon system uses mid-course guidance with a radar seeker to attack surface ships. Its low-level, sea-skimming cruise trajectory, active radar guidance and warhead design assure high survivability and effectiveness. The Harpoon missile and its launch control equipment provide the warfighter capability to interdict ships at ranges well beyond those of other aircraft.

The Harpoon missile was designed to sink warships in an open-ocean environment. Other weapons (such as the Standard and Tomahawk missiles) can be used against ships, but Harpoon and Penguin are the only missiles used by the United States military with anti-ship warfare as the primary mission. Once targeting information is obtained and sent to the Harpoon missile, it is fired. Once fired, the missile flys to the target location, turns on its seeker, locates the target and strikes it without further action from the firing platform. This allows the firing platform to engage other threats instead of concentrating on one at a time.

An appropriately configured HARPOON can be launched from an AERO-65 bomb rack, AERO-7/A bomb rack, MK 6 canister, MK 7 shock resistant canister, MK 12 thickwall canister, MK 112 ASROC launcher, MK 8 and MK 116 TARTAR launcher, or submarine torpedo tube launcher.

The AGM-84D Harpoon is an all-weather, over-the-horizon, anti-ship missile system produced by Boeing [formerly McDonnell Douglas]. The Harpoon’s active radar guidance, warhead design, and low-level, sea-skimming cruise trajectory assure high survivability and effectiveness. The missile is capable of being launched from surface ships, submarines, or (without the booster) from aircraft. The AGM-84D was first introduced in 1977, and in 1979 an air-launched version was deployed on the Navy’s P-3 Orion aircraft. Originally developed for the Navy to serve as its basic anti-ship missile for fleetwide use, the AGM-84D also has been adapted for use on the Air Force’s B-52G bombers, which can carry from eight to 12 of the missiles.

The AGM-84E Harpoon/SLAM [Stand-Off Land Attack Missile] Block 1E is an intermediate range weapon system designed to provide day, night and adverse weather precision strike capability against high value land targets and ships in port. In the late 1980s, a land-attack missile was needed. Rather than design one from scratch, the US Navy took everything from Harpoon except the guidance and seeker sections, added a Global Positioning System receiver, a Walleye optical guidance system, and a Maverick data-link to create the Stand-off Land Attack Missile (SLAM). The AGM-84E uses an inertial navigation system with GPS, infrared terminal guidance, and is fitted with a Tomahawk warhead for better penetration. SLAM can be launched from land-based or aircraft carrier-based F/A-18 Hornet aircraft. It was employed successfully in Operation Desert Storm and UN relief operations in Bosnia prior to Operation Joint Endeavor.

slam-er_graphic

The SLAM-ER (Expanded Response) Block 1F, a major upgrade to the SLAM missile that is currently in production, provides over twice the missile range, target penetration capability, and control range of SLAM. SLAM-ER has a greater range (150+ miles), a titanium warhead for increased penetration, and software improvements which allow the pilot to retarget the impact point of the missile during the terminal phase of attack (about the last five miles). In addition, many expansions are being made to improve performance, survivability, mission planning, and pilot (man-in-the-loop) interface. The SLAM-ER development contract was awarded to McDonnell Douglas Aerospace (Now BOEING) in February of 1995. SLAM-ER achieved its first flight in March of 1997. All Navy SLAM missiles are currently planned to be retrofitted to SLAM-ER configuration. About 500 SLAM missiles will be converted to the SLAM-ER configuration between FY 1997 and FY 2001.

Primary Function: Air-to-surface anti-ship missile
Mission Maritime ship attack
Targets Maritime surface
Service Navy and Air Force
Contractor: Boeing [ex McDonnell Douglas]
Power Plant: Teledyne Turbojet and solid propellant booster for surface and submarine launch
Program status Operational
  sea-launch air-launch SLAM SLAM-ER
First capability 1977 1979    
Thrust: 660 pounds
Length: 15 feet
(4.55 meters)
12 feet, 7 inches
(3.79 meters)
14 feet, 8 inches
(4.49 meters)
Weight: 1,470 pounds
(661.5 kilograms)
1,145 pounds
(515.25 kilograms)
1,385 pounds
(629.55 kilograms)
Diameter: 13.5 inches (34.29 centimeters)
Wingspan: 3 feet (91.44 centimeters)
Range: Greater than 60 nautical miles 150+ miles
Speed: 855 km/h
Guidance System: Sea-skimming cruise with mid-course guidance monitored by radar altimeter, active seeker radar terminal homing inertial navigation system with GPS, infrared terminal guidance
Warheads: Penetration high-explosive blast (488 pounds)
Explosive Destex
Fuze Contact
Development cost $320.7 million
Production cost $2,882.3 million
Total acquisition cost $3,203.0 million
Acquisition unit cost $527,416
Production unit cost $474,609
Quantity Navy: 5,983; Air Force: 90
Platforms A-6, F/A-18, S-3, P-3, B-52H, ships

Source fas.org

f18_super_hornet_4_harpoons_boeing

Advanced Anti-Radiation Guided Missile (AARGM)

AGM-88 HARM high-speed anti-radiation missiles Range: 150 kilometres; 92 miles (80 nmi) Speed:  2,280 km/h (1,420 mph)

The Advanced Anti-Radiation Guided Missile (AGM-88E) provides the U.S. Navy, U.S. Marine Corps and Italian Air Force the latest and most advanced weapon system for engaging and destroying enemy air defenses and time-critical, mobile targets. AARGM is a supersonic, medium-range, air-launched tactical missile compatible with U.S. and allied strike aircraft, including all variants of the F/A-18, Tornado, EA-18G, F-16, EA-6B, and F-35 (external).

Designed to upgrade the AGM-88 High-Speed, Anti-Radiation Missile system (HARM), AARGM features an advanced, digital, anti-radiation homing sensor, millimeter wave (MMW) radar terminal seeker, precise Global Positioning System/Inertial Navigation System (GPS/INS) guidance, net-centric connectivity, and Weapon Impact Assessment transmit (WIA). Missile Impact Transmitter capability is available for approved customers. The missile offers extended-range engagement, as well as organic, in-cockpit emitter targeting capability and situational awareness.

New capabilities for the warfighter include:

  • Anti-radar strike with advanced signal processing and vastly improved frequency coverage, detection range and field of view
  • Time-critical, standoff strike with supersonic GPS/INS point-to-point or point-to-MMW-terminal guidance
  • Missile-impact zone control to prevent collateral damage through tightly coupled, Digital Terrain Elevation Database-aided GPS/INS
  • Counter-emitter shutdown through active MMW-radar terminal guidance
  • WIA transmission prior-to-impact for bomb damage assessment

Orbital ATK is teamed with MBDA to provide this advanced, cost-effective weapon system to U.S. and approved allied customers.

AARGM Fact Sheet OA Interim

AGM-154 JSOW joint stand-off weapon

The AGM-154A (Formerly Advanced Interdiction Weapon System) is intended to provide a low cost, highly lethal glide weapon with a standoff capability. JSOW family of kinematically efficient, air-to-surface glide weapons, in the 1,000-lb class, provides standoff capabilities from 15 nautical miles (low altitude launch) to 40 nautical miles (high altitude launch). The JSOW will be used against a variety of land and sea targets and will operate from ranges outside enemy point defenses. The JSOW is a launch and leave weapon that employs a tightly coupled Global Positioning System (GPS)/Inertial Navigation System (INS), and is capable of day/night and adverse weather operations.

The JSOW uses inertial and global positioning system for midcourse navigation and imaging infra-red and datalink for terminal homing. The JSOW is just over 13 feet in length and weighs between 1000-1500 pounds. Extra flexibility has been engineered into the AGM-154A by its modular design, which allows several different submunitions, unitary warheads, or non-lethal payloads to be carried. The JSOW will be delivered in three variants, each of which uses a common air vehicle, or truck, while substituting various payloads.

AGM-154A (Baseline JSOW) The warhead of the AGM-154A consists of 145 BLU-97/B submunitions. Each bomblet is designed for multi-target in one payload. The bomblets have a shaped charge for armor defeat capability, a fragmenting case for material destruction, and a zirconium ring for incendiary effects.

AGM-154B (Anti-Armor) The warhead for the AGM-154B is the BLU-108/B from the Air Force’s Sensor Fuzed Weapon (SFW) program. The JSOW will carry six BLU-108/B submunitions. Each submunition releases four projectiles (total of 24 per weapons) that use infrared sensors to detect targets. Upon detection, the projectile detonates, creating an explosively formed, shaped charge capable of penetrating reinforced armor targets.

AGM-154B – Image: media.defenceindustrydaily.com

AGM-154C (Unitary Variant) The AGM-154C will use a combination of an Imaging Infrared (IIR) terminal seeker and a two-way data link to achieve point target accuracy through aimpoint refinement and man-in-the-loop guidance. The AGM-154C will carry the BLU-111/B variant of the MK-82, 500- pound general purpose bomb, equipped with the FMU-152 Joint Programmable Fuze (JPF) and is designed to attack point targets. Source fas.org

GBU-38 500-pound, GBU-31 2,000-pound Joint Direct Attack Munition (JDAM)

CBU-97 1,000-pound Sensor Fuzed Weapon

Wind-corrected munitions dispenser (WCMD) – Image: media.defenceindustrydaily.com

GBU-10 2,000-pound, GBU-12 500-pound, GBU-16 1,000-pound Paveway II

GBU-24 2,000-pound Paveway III laser-guided bomb

Mk 62/63 Quickstrike Naval Mines

wamus_mines_mk63_picMark 63 “Quickstrike” Mine. USS John C. Stennis (CVN 74) in November 2003. U.S. Navy Photograph 031104-N-1573O-036. – Image: navweaps.com

Conversion of Mark 82 [500 lbs. (227 kg)] bomb. Superseded Destructor EX-52. Marks 62, 63 and 64 are known as the “Quickstrike” series and have a variable influence target designation system that can be used against either land or sea targets. Quickstrike was conceived as a new series of ground mines, replacing the ones that had become compromised as a result of the Vietnam War. These new mines use the same design concept as do “smart” bombs, that is, they are simple bolt-on additions to a standard air-dropped bomb. Quickstrike’s design emphasizes ease of maintenance and ease of mine preparation for use. For example, the older mines required refrigeration of their batteries to prolong life, the Quickstrikes do not. Source navweaps.com

Countermeasures

The AN/ALQ-124 integrated defensive countermeasures system (IDECM) provides a coordinated situation awareness and manages the on-board and off-board deception countermeasures, the expendable decoys, and signal and frequency control of emissions. The system has been jointly developed by BAE Systems information & electronic warfare systems (IEWS – formerly Sanders) and ITT Electronic Systems.

The IDECM system includes the ALE-47 countermeasures dispenser, the ALE-50 towed decoy and the AN/ALR-67(V)3 radar warning receiver. IDECM began operational evaluation in December 2002 and was successfully deployed during Operation Iraqi Freedom.

The BAE Systems Integrated Defense Solutions (formerly Tracor) ALE-47 countermeasures dispenser system is capable of dispensing chaff cartridges, flares, and the POET and GEN-X active expendable decoys.

ALE-47 countermeasures dispenser

450px-ALE-47_countermeasures_detectorALE-47 countermeasures dispenser and associated equipmentsfa-18e_165898_11_of_20ALE-47 countermeasures dispenser under F-18E – Image: michael_block

The ALE-50 Towed Decoy, from Raytheon E-Systems, provides long-range detection and extremely fast deployment against most radar-guided threats.

ALE-50 Towed Decoy

AN/ALE-50 towed decoy system

The AN/ALE-50 towed decoy system was developed by Raytheon to protect multiple US military aircraft from radar-guided missiles. The ALE-50 consists of a launch controller, launcher and towed decoy. It can be used on a variety of platforms without modification. When deployed, the ALE-50’s expendable aerial decoy is towed behind the aircraft. The decoy protects the host aircraft providing a more attractive target and steering the radar-guided missile away from the aircraft and right to the decoy. ALE-50 has countered both surface-to-air and air-to-air missiles. Currently, the ALE-50 is installed on F-16s aircraft and is planned for installation on B-1B bombers and F/A-18 aircraft. The ALE-55 is a derivative of the ALE-50 would be the production decoy installed on B-1B bombers. Source deagel.com

elec_an-ale-50_aerial_towed_decoy_lgAN/ALE-50 towed decoy system – Image: theaviationist.com

BAE Systems AN/ALE-55 fibre-optic towed decoy has completed development testing and will replace the ALE-50 from December 2009 when it enters service. The Raytheon AN/ALR-67(V)3 radar warning receiver intercepts, identifies and prioritises threat signals, which are characterised in terms of frequency, amplitude, direction and pulse width.

Raytheon AN/ALR-67(V)3 radar warning receiver

rtn_230414Image: raytheon.com

F-18-2-Image.PNG

The AN/ALR-67(V)3 Advanced Special Receiver is a radar warning receiver (RWR) designed to meet Navy requirements through the year 2020. This is an upgrade to the ALR-67 (V)2 system currently used on F/A-18 Hornet, F-14 Tomcat, and AV-8 Harrier aircraft. It will enable Navy and Marine Corps tactical aircraft to detect threat radar emissions, thus enhancing aircrew situational awareness and aircraft survivability. The program is in the Engineering and Manufacturing Development (EMD) phase, with development work by Hughes, Los Angeles, CA.

The AN/ALR-67(v)3 ASR contributes to full-dimensional protection by improving individual aircraft probability of survival through improved aircrew situational awareness of the radar guided threat environment.  Source fas.org

Sensors

The Super Hornet is equipped with the APG-73 radar manufactured by Raytheon. The APG-73 radar has an upgraded processor with increased speed and memory capacity in comparison to the AN/APG-65, which was installed on the earlier builds of the Hornet. The modes of the APG-73 include air-to-ground tracking, air-to-air velocity search mode, range while search and track while scan.

Raytheon’s AN/APG-79 Active Electronically Scanned Array (AESA) fire control radar will increase the F/A-18’s air-to-air target detection and tracking range and provide higher resolution air-to-ground mapping at longer ranges. The The AN/APG-79 AESA entered Low Rate Initial Production (LRIP) in September 2003 and began Operational Evaluation (OPEVAL) in July 2006. It is being fitted to block 2 aircraft and retrofitted to 135 block 1 aircraft. The radar is planned to begin operational deployment on the USN F/A-18s in 2008.

APG-79 multi-mode radar

APG-79-AESA-1AAPG-79 multi-mode radar with passive detection mode and active radar suppression

With its active electronic beam scanning — which allows the radar beam to be steered at nearly the speed of light — the APG-79 optimizes situational awareness and provides superior air-to-air and air-to-surface capability. The agile beam enables the multimode radar to interleave in near-real time, so that pilot and crew can use both modes simultaneously.

Now in full rate production for the U.S. Navy and Royal Australian Air Force, the APG-79 demonstrates reliability, image resolution, and targeting and tracking range significantly greater than that of the previous mechanically scanned array F/A-18 radar. With its open systems architecture and compact, commercial-off-the-shelf parts, it delivers dramatically increased capability in a smaller, lighter package. The array is composed of numerous solid-state transmit and receive modules to virtually eliminate mechanical breakdown. Other system components include an advanced receiver/exciter, ruggedized COTS processor, and power supplies.

In addition to the APG-79, Raytheon supplies the F/A-18E/F aircraft with several other systems. Among these are the current APG-73 radar, ATFLIR forward-looking infrared targeting pod, ALR-67(V)3 digital radar warning receiver, ALE-50 towed decoy and a variety of missiles and bombs, including laser-guided weapons such as the Paveway and JSOW. Source raytheon.com

radarcomparision0aoImage: ausairpower.net

The Super Hornet also carries Raytheon’s Miniature Airborne Global Positioning System Receiver (MAGR-2000). Using an open systems architecture, the receiver provides improved position, velocity and time performance reporting, resulting in a more accurate weapon delivery.

MINIATURE AIRBORNE GPS RECEIVER (MAGR) 2000 AND MAGR 2000 SAASM

5262fef7cf65a

The MAGR 2000 design is a GPS Receiver Applications Module (GRAM) based open system architecture that is modular in design and incorporates modern electronics. The MAGR 2000 is a form, fit, and function backward compatible replacement of the MAGR, and provides enhancements including improved acquisition and GPS solution performance, all-in-view GPSsatellite tracking and GPS integrity. Source raytheon.com

The aircraft is being fitted with the Raytheon AN/ASQ-228 ATFLIR (Advanced Targeting Forward-Looking Infrared) precision targeting pod. ATFLIR consists of a 3-5 micron staring focal plane array targeting FLIR, BAE Systems Avionics high-powered diode-pumped laser spot tracker, BAE Systems Avionics navigation FLIR and CCD TV camera. Initial Operating Capability (IOC) was achieved in April 2003 and the system is now in full-rate production.

Raytheon AN/ASQ-228 ATFLIR targeting pod

rtn_231015Advanced Targeting Forward-Looking Infra-Red (ATFLIR)

The AN/ASQ-228 Advanced Targeting Forward-Looking Infrared (ATFLIR) is a multi-sensor, electro-optical targeting pod incorporating thermographic camera, low-light television camera, target laser rangefinder/laser designator, and laser spot tracker developed and manufactured by Raytheon. It is used to provide navigation and targeting for military aircraft in adverse weather and using precision-guided munitions such as laser-guided bombs. It is intended to replace the earlier AN/AAS-38 Nite Hawk pod in US Navy service.

2145381511Image: Avia News

ATFLIR is 72 in (183 cm) long, weighs 420 lb (191 kg), and has a slant range of 40 mi (64.3 km), said to be useful at altitude of up to 50,000 ft (15,240 m).[1] It has fewer parts than many previous systems, which is intended to improve serviceability (although early examples, in service with VFA-115 ‘Eagles’ in 2003 experienced problems). Crews indicate that it offers much greater target resolution and image accuracy than previous systems.

ATFLIR presently is used only by the US Navy on the Boeing F/A-18E/F Super Hornet and the earlier F/A-18C/D and with Marine F/A-18Cs when deployed onboard aircraft carriers. It is normally carried on one of the fuselage hardpoints otherwise used for AIM-120 AMRAAM missiles. 410 pods were delivered to the U.S. Navy. Pods have also been delivered to Switzerland and Australia, and six pods will be delivered to Malaysia. Source revolvy.com

US Marine Corps aircraft are being fitted with the Northrop Grumman Litening AT Advanced Targeting pod, with 540 x 512 pixel FLIR, CCD TV, laser spot tracker, infrared laser marker and infrared laser rangefinder / designator.

Northrop Grumman Litening AT Advanced Targeting pod

Northrop Grumman’s widely fielded LITENING system is a combat proven, self-contained, multi-sensor targeting and surveillance system. LITENING enables aircrews to detect, acquire, auto-track and identify targets at extremely long ranges for weapon delivery or nontraditional intelligence, surveillance and reconnaissance missions. LITENING’s 1K FLIR, 1K charged-coupled device (CCD), laser imaging sensors, advanced image processing and digital video output provide superior imagery, allowing aircrews to identify and engage targets under a wide range of battlefield conditions.

LITENING is in operation worldwide

The pod is currently flown by the U.S. Marine Corps, all components of the U.S. Air Force, and international customers. The latest configuration, LITENING G4, is authorized for export to NATO countries, including Canada, the United Kingdom and Korea.

LITENING targeting pods feature:

  • Full 1K FLIR and CCD, the highest resolution available in any fielded targeting pod
  • Digital, high definition video to the cockpit
  • Laser imaging sensors for more accurate identification
  • Color symbology for reduced pilot workload and integration with new cockpit displays
  • Multiple fields of view for a complete view of the situation
  • Advanced two-way plug-and-play datalinks, including NET-T integration, that seamlessly communicate with ground stations
  • Flexible upgrade path to bring older pods to the latest configuration affordably.

LITENING by the numbers

  • More than two million hours flown, including more than 770,000 combat flight hours
  • Greater than 97% availability
  • Integrated on the F-16 Block 30, F-16 Block 40/50, A-10C, AV-8B, B-52, EA-6B, F-15E and F/A-18 C/D.
  • More than 500 LITENING G4 pods delivered
  • More than 800 pods total delivered

Source northropgrumman.com

F/A-18F aircraft also being fitted with the Raytheon SHARP multi-function reconnaissance pod, set to replace USN Tactical Airborne Reconnaissance Pod (TARPS), currently flown on the F-14 Tomcat. SHARP is capable of simultaneous airborne and ground reconnaissance and has sensors manufactured by Recon/Optical Inc. 16 LRIP systems have been ordered and the first was delivered in April 2003. The system is deployed on aircraft operating from USS Nimitz carriers.

Raytheon SHAred Reconnaissance Pod (SHARP)

shrppod_01

The U. S. Navy requires an organic, all-weather, day/night, manned, tactical air reconnaissance capability to provide continuous and immediate intelligence support to the Battle Group Commander (BGC) in the prosecution of independent, joint, or combined operations as well as to provide intelligence data for the security of those forces under his/her command. This capability is required to replace the F-14 Tactical Air Reconnaissance Pod (TARPS) capability, scheduled for phase-out in FY03. To meet this requirement, the Department of the Navy will incorporate a SHAred Reconnaissance Pod (SHARP) on the centerline of the F/A-18E/F that will employ a suite of sensors to collect infrared, visible, and synthetic aperture radar (SAR) digital imagery at medium and high altitudes.

SHARP will be a major contributor to the precision strike capability of GPS and digital, image-guided weapons and will IOC with the first FA-18F squadron. The system will utilize COTS/NDI dual-band electro-optic/infrared (EO/IR) sensors and subsystems in a pod for tactical and other aircraft. It will provide all altitude over flight and long range stand-off EO/IR imagery and SAR, capable of near real-time datalink to afloat and shore-based JSIPS stations. The SHARP program is currently funded to meet the Navy’s minimum warfighting requirement of 24 pods. The inventory objective is 50 systems (40 operational and 10 pipeline).

030113-n-shared-reconnaissance-pod-sharp-is-a-multi-functioned-reconnaissance-pod-for-tactical-manned-airborne-reconnaissance

The required capability described herein must be supportable within the capability of the deployed carrier air wing or the F/A-18E/F aircraft forward deployed support posture. The complete airborne reconnaissance system must employ digital technology and be compatible with Common Imagery Ground/Surface System (CIG/SS) compliant ground stations. The reconnaissance system must include overflight and standoff capability in both day and night conditions. The full range of reconnaissance capability may be provided through separate and interchangeable medium and high altitude sensors that can be easily reconfigured into optimum mission suites. However, a single sensor that could meet both medium and high altitude requirements is desirable. To ensure true multi-mission capability of the F/A-18E/F aircraft the SHARP pod must be capable of being installed or removed with full mission turnaround capability of less than one hour. Source fas.org

Engines

26500333_nRjJ6-MImage: from the web

The aircraft’s power is provided by two F414-GE-400 turbofan engines from General Electric. The engines are an advanced derivative of the GE F404 engines installed on the Hornet. The air inlets have been enlarged to provide increased airflow into the engines.

The engines each provide 22,000lb thrust, with afterburn giving a maximum speed in excess of Mach 1.8.

The structural changes to the airframe on the F/E variant of the aircraft increase the internal fuel capacity by 3,600lb, a 33% higher fuel capacity than the F-18C/D variant. This extends the mission radius by up to 40%.

F414-GE-400 turbofan engines

f414_01General Electric F414 turbo-fan engines

The General Electric F414-GE-400 is a 22,000-pound class afterburning turbofan engine. The engine features an axial compressor with 3 fan stages and 7 high-pressure compressor stages, and 1 high-pressure and 1 low-pressure turbine stage. At a weight of 2,445 pounds, the F414-GE-400 has a thrust-to-weight ratio of 9. The F414 is one of the U.S. Navy’s newest and most advanced aircraft engines. It incorporates advanced technology with the proven design base of its F404 predecessor – for example the F414 features a FADEC (Full Authority Digital Engine Control) system – to provide the Boeing F/A-18E/F Super Hornet and the EA-18G Growler with a durable, reliable and easy-to-maintain engine.

93d3968b5216d80a0857ffe35668a287

Manufacturer: General Electric Co.
Thrust: 22,000 pounds
Overall Pressure Ratio at Maximum Power: 30
Thrust-to-Weight Ratio: 9
Compressor: Two-spool, axial flow, three-stage fan
LP-HP Compressor Stages: 0-7
HP-LP Turbine Stages: 1-1
Combustor Type: Annular
Engine Control: FADEC
Length: 154 in (3.91 m)
Diameter: 35 in (88.9 cm)
Dry Weight: 2,445 lbs (1,109 kg)
Platforms: F/A-18E/F Super Hornet; EA-18G Growler

Source fi-powerweb.com

Main material source airforce-technology.com

Revised Jan 08, 2017

FA-18EF-vs-Flanker-1

Aircraft Specifications:

Primary Function: Multi-role tactical fighter and attack aircraft
Prime Contractor: Airframe: McDonnell Douglas (The Boeing Co.); Engines: General Electric Co.
Power Plant: 2x General Electric F414-GE-400 afterburning turbofan engines
Thrust: 14,000 pounds dry thrust; 22,000 pounds thrust with afterburner (each engine)
Wingspan: 44 ft 9 in (13.68 m)
Length: 60 ft 1 in (18.5 m)
Height: 16 ft (4.87 m)
Weight (Empty): 32,000 lbs (14,520 kg)
Maximum Takeoff Weight (MTOW): 66,000 lbs (29,930 kg)
Payload: Max. 34,000 lbs (15,420 kg)
Speed: Max: Mach 1.8+/1,034 kts/1,190 mph (1,934 km/h)
Service Ceiling: 50,000+ ft (15,240+ m)
Range: 1,275 nm/1,467 miles (2,346 km) – clean plus two AIM-9 Sidewinder missiles
Combat Radius: 390 nm/449 miles (723 km)
Crew: E models: One; F models: Two

Aircraft Inventory (September 2015):

F/A-18A: 95
F/A-18B: 21
F/A-18C: 368
F/A-18D: 129
F/A-18A/B/C/D Hornet Total: 613

F/A-18E: 279
F/A-18F: 261
F/A-18E/F Super Hornet Total: 540

Source fi-aeroweb.com

Advertisements

4 thoughts on “F/A-18E/F Super Hornet Strike Aircraft

  1. nonothai Post author

    As I mentioned the F18 is very costly to operate the Philippines is likely to chose the F16 as seen by Indonesia also with many islands as they are cheaper to operate. The US is currently trying to entice the Indonesians to order there latest F16V but I don’t agree as it is a very old platform which is at the end of any further development. However, Indonesia is likely to favor it as they are already operating the F16A/B and recently received 24 F16C/D any change of a new fighter would incur additional cost in training and spare parts. See earlier post https://thaimilitaryandasianregion.wordpress.com/2015/10/09/us-defense-giant-lockheed-martin-is-ready-to-provide-indonesia-with-an-offset-scheme-if-it-decides-to-buy-the-latest-variant-of-the-venerable-f-16-fighting-falcon-light-jet-fighter/

    Like

    Reply
  2. Nicky

    That’s why I am all for the US in giving the Philippines the Legacy Short Hornets the F/A-18 C/D. At least they can take the legacy hornets and the US, Australia and Canada can keep the Super Hornets.

    Like

    Reply
    1. nonothai Post author

      F18 are expensive to operate and maintain so I guess it won’t happen it is more like F16 which is much cheaper to operate and maintain and spare parts are easily available. The US has huge inventory of F16 stored.

      Like

      Reply
      1. Nicky

        For the Philippines, since they are an island nation, they need two engines and I think the legacy F/A-18 C/D is more preferred than the F-16’s. Besides the US is already taking the oldest F-16’s and converting them to QF-16 Drones. They should go for the ones, the USMC & USN are using right now.

        Like

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s