Lockheed Martin F-35 Lightning II

Lockheed Martin F-35 Lightning II

The Lockheed Martin F-35 Lightning II is a family of single-seat, single-engine, all-weather stealth multirole fighters undergoing final development and testing by the United States. The fifth generation combat aircraft is designed to perform ground attack, aerial reconnaissance, and air defense missions. The F-35 has three main models: the F-35A conventional takeoff and landing (CTOL) variant, the F-35B short take-off and vertical-landing (STOVL) variant, and the F-35C carrier-based Catapult Assisted Take-Off But Arrested Recovery (CATOBAR) variant. On 31 July 2015, the first squadron was declared ready for deployment after intensive testing by the United States.

The F-35 is descended from the X-35, which was the winning design of the Joint Strike Fighter (JSF) program. It is being designed and built by an aerospace industry team led by Lockheed Martin. Other major F-35 industry partners include Northrop Grumman, Pratt & Whitney and BAE Systems. The F-35 took its first flight on 15 December 2006. The United States plans to buy 2,457 aircraft. The F-35 variants are intended to provide the bulk of the manned tactical airpower of the U.S. Air Force, Navy, Marine Corps over the coming decades. Deliveries of the F-35 for the U.S. military are scheduled to be completed in 2037.

AF-6 Flt 1

F-35 JSF development is being principally funded by the United States with additional funding from partners. The partner nations are either NATO members or close U.S. allies. The United Kingdom, Italy, Australia, Canada, Norway, Denmark, the Netherlands, and Turkey are part of the active development program; several additional countries have ordered, or are considering ordering, the F-35.

JSF program requirements 

The JSF program was designed to replace the United States military F-16, A-10, F/A-18 (excluding newer E/F “Super Hornet” variants) and AV-8B tactical fighter and attack aircraft. To keep development, production, and operating costs down, a common design was planned in three variants that share 80 percent of their parts:
  • F-35A, conventional take off and landing (CTOL) variant.
  • F-35B, short-take off and vertical-landing (STOVL) variant.
  • F-35C, carrier-based CATOBAR (CV) variant.

The development of the F-35 is unusual for a fighter aircraft in that no two-seat trainer versions have been built for any of the variants; advanced flight simulators mean that no trainer versions were deemed necessary. Instead F-16s have been used as bridge trainers between the T-38 and the F-35. The T-X was intended to be used to train future F-35 pilots, but this might succumb to budget pressures in the USAF.


Lockheed Martin’s development roadmap extends until 2021, including a Block 6 engine improvement in 2019. The aircraft are expected to be upgraded throughout their operational lives.

In September 2013, Northrop Grumman revealed the development of a company-funded Directional Infrared Counter Measures system in anticipation of a requirement to protect the F-35 from heat-seeking missiles. A laser jammer is expected to be part of the F-35 Block 5 upgrade; it must meet low-observability (LO) requirements and fit in the F-35’s restricted space. Called the Threat Nullification Defensive Resource (ThNDR), it is to have a small, powerful laser, beam steering and LO window, use liquid cooling, and fit alongside the distributed aperture system (DAS) to provide spherical coverage with minimal changes; the DAS would provide missile warning and cue the jam head.


Combat capabilities of the F-35 are made possible through software increments to advance technical abilities. Block 2A software enhanced simulated weapons, data link capabilities, and early fused sensor integration. Block 2B software enables the F-35 to provide basic close air support with certain JDAMs and the 500 lb GBU-12 Paveway II, as well as fire the AIM-120 AMRAAM. The Air Force is to declare the F-35 initially operational with Block 3i software. Full operational capability will come from Block 3F software; Block 3F enhances its ability to suppress enemy air defenses and enables the Lightning II to deploy the 500 lb JDAM, the GBU-53/B SDB II, and the AIM-9X Sidewinder. Block 4 software will increase the weapons envelope of the F-35 and is made to counter air defenses envisioned to be encountered past the 2040s. Block 4 upgrades will be broken into two increments; Block 4A in 2021 and Block 4B in 2023. This phase will also include usage of weaponry unique to British, Turkish, and other European countries who will operate Lightning II.

Lockheed has offered the potential of “Higher Definition Video, longer range target detection and identification, Video Data Link, and Infrared (IR) Marker and Pointer” for the EOTS in future upgrades.



The F-35 resembles a smaller, single-engine sibling of the twin-engine Lockheed Martin F-22 Raptor and drew elements from it. The exhaust duct design was inspired by the General Dynamics Model 200 design, proposed for a 1972 supersonic VTOL fighter requirement for the Sea Control Ship. Although several experimental designs have been developed since the 1960s, such as the unsuccessful Rockwell XFV-12, the F-35B is to be the first operational supersonic, STOVL stealth fighter.

Some improvements over current-generation fighter aircraft are:

  • Durable, low-maintenance stealth technology, using structural fiber mat instead of the high-maintenance coatings of legacy stealth platforms;
  • Integrated avionics and sensor fusion that combine information from off- and on-board sensors to increase the pilot’s situational awareness and improve target identification and weapon delivery, and to relay information quickly to other command and control (C2) nodes
  • High speed data networking including IEEE 1394b and Fibre Channel. (Fibre Channel is also used on Boeing’s Super Hornet.)
  • The Autonomic Logistics Global Sustainment (ALGS), Autonomic Logistics Information System (ALIS) and Computerized maintenance management system (CMMS) are to help ensure aircraft uptime with minimal maintenance manpower. The Pentagon has moved to open up the competitive bidding by other companies. This was after Lockheed Martin stated that instead of costing twenty percent less than the F-16 per flight hour, the F-35 would actually cost twelve percent more. Though the ALGS is intended to reduce maintenance costs, the company disagrees with including the cost of this system in the aircraft ownership calculations. The USMC have implemented a workaround for a cyber vulnerability in the system. The ALIS system currently requires a shipping container load of servers to run, but Lockheed is working on a more portable version to support the Marines’ expeditionary operations.
  • Electro-hydrostatic actuators run by a power-by-wire flight-control system.
  • A modern and updated flight simulator, which may be used for a greater fraction of pilot training in order to reduce the costly flight hours of the actual aircraft.
  • Lightweight, powerful Lithium-ion batteries potentially prone to thermal runaway, similar to those that have grounded the Boeing 787 Dreamliner fleet. These are required to provide power to run the control surfaces in an emergency, and have been strenuously tested.


 photo VSTOLJSFengineFORUM.jpgPratt & Whitney F135

The Pratt & Whitney F135 powers the F-35. An alternative engine, the General Electric/Rolls-Royce F136, was being developed until it was cancelled by its manufacturers in December 2011 due to lack of funding from the Pentagon.

General Electric/Rolls-Royce F136

The F135 and F136 engines are not designed to supercruise. However, the F-35 can briefly fly at Mach 1.2 for 150 miles.The F135 is the second (radar) stealthy afterburning jet engine. Like the Pratt & Whitney F119 from which it was derived, the F135 has suffered afterburner pressure pulsations, or ‘screech’ at low altitude and high speed. The F-35 has a maximum speed of over Mach 1.6. With a maximum takeoff weight of 60,000 lb (27,000 kg), the Lightning II is considerably heavier than the lightweight fighters it replaces.


The STOVL F-35B is outfitted with the Rolls-Royce Lift System, designed by Lockheed Martin and developed by Rolls-Royce. This system more resembles the German VJ 101D/E than the preceding STOVL Harrier Jump Jet and the Rolls-Royce Pegasus engine. The Lift System is composed of a lift fan, drive shaft, two roll posts and a “Three Bearing Swivel Module” (3BSM). The 3BSM is a thrust vectoring nozzle which allows the main engine exhaust to be deflected downward at the tail of the aircraft. The lift fan is near the front of the aircraft and provides a counterbalancing thrust using two counter-rotating blisks. It is powered by the engine’s low-pressure (LP) turbine via a drive shaft and gearbox. Roll control during slow flight is achieved by diverting unheated engine bypass air through wing-mounted thrust nozzles called Roll Posts.


440px-Jet_engine_F135(STOVL_variant)'s_thrust_vectoring_nozzle_N27 3D model airflow trials

F136 funding came at the expense of other program elements, impacting on unit costs. The F136 team stated their engine had a greater temperature margin, potentially critical for VTOL operations in hot, high altitude conditions. Pratt & Whitney tested higher thrust versions of the F135, partly in response to GE’s statements that the F136 is capable of producing more thrust than the 43,000 lbf (190 kN) of early F135s. In testing, the F135 has demonstrated a maximum thrust of over 50,000 lbf (220 kN); making it the most powerful engine ever installed in a fighter aircraft as of 2010. It is much heavier than previous fighter engines; the Heavy Underway Replenishment system needed to transfer the F135 between ships is an unfunded USN requirement. Thermoelectric-powered sensors monitor turbine bearing health.


F35_GAU_22A_Equalizer_General_Dynamics_Wide894ef983 GAU-22/A four barrel cannon
The F-35A is armed with a GAU-22/A, a four-barrel version of the 25 mm GAU-12 Equalizer cannon. The cannon is mounted internally with 182 rounds for the F-35A or in an external pod with 220 rounds for the F-35B and F-35C; the gun pod has stealth features. The F-35 has two internal weapons bays, and external hardpoints for mounting up to four under wing pylons and two near wingtip pylons. The two outer hardpoints can carry pylons for the AIM-9X Sidewinder and AIM-132 ASRAAM short-range air-to-air missiles (AAM) only.
The other pylons can carry the AIM-120 AMRAAM BVR AAM, Storm Shadow cruise missile, AGM-158 Joint Air to Surface Stand-off Missile (JASSM) cruise missile, and guided bombs. The external pylons can carry missiles, bombs, and external fuel tanks at the expense of increased radar cross-section, and thus reduced stealth.

There are a total of four weapons stations between the two internal bays. Two of these can carry air-to-surface missiles up to 2,000 lb (910 kg) in A and C models, or two bombs up to 1,000 lb (450 kg) in the B model; the other two stations are for smaller weapons such as air-to-air missiles. The weapon bays can carry AIM-120 AMRAAM, AIM-132 ASRAAM, the Joint Direct Attack Munition (JDAM), Paveway series of bombs, the Joint Standoff Weapon (JSOW), Brimstone anti-tank missiles, and cluster munitions (Wind Corrected Munitions Dispenser). An air-to-air missile load of eight AIM-120s and two AIM-9s is possible using internal and external weapons stations; a configuration of six 2,000 lb (910 kg) bombs, two AIM-120s and two AIM-9s can also be arranged. The Terma A/S multi-mission pod (MMP) could be used for different equipment and purposes, such as electronic warfare, aerial reconnaissance, or rear-facing tactical radar.

Matra BAE Dynamics Alenia announced first Advanced Short Range Air-to-Air Missiles were delivered to USA for integration testing on the F-35: HERE

AIM-132 ASRAAM short-range air-to-air missiles (AAM)

MBDA lands order to arm Britain’s new stealth fighters: Here

ASRAAM design and features

The ASRAAM air-to-air missile can outperform all existing short-range missiles in close-in combat missions. It features low-drag design concept incorporating body lift technology.


The tail-controlled missile measures 2.9m in length, 166mm in diameter and 88kg in weight. It is fitted with high-explosive blast fragmentation warhead with impact and laser proximity fuses. The missile is also equipped with seeker detector cooling and self contained cooling engine.

The missile can be deployed using lock before launch capability to engage targets in the forward hemisphere. It can be launched in ‘lock after launch’ mode to engage targets beyond the seeker acquisition range.

The missile gathers target positional data from aircraft sensors including radar or helmet mounted sight during close-in combat missions when target is located outside the off-boresight and visual limits of seeker. This capability ensures the aircraft’s crew to perform over-the-shoulder firing in ‘lock after launch’ mode.

Missile guidance and sensors

The ASRAAM weapon is guided by an advanced, accurate focal plane array Imaging Infra-Red (IIR) seeker developed by Raytheon. The passive homing guidance system provides the ability to significantly track, acquire and engage targets beyond visual range (BVR) under severe clutter and countermeasures environmental situations.

Imaging Infra-Red (IIR) seeker developed by Raytheon

The missile collects the target data using fibre optic gyro sensors and solid state accelerometers, stabilised in three axes. It can also gather target information from autonomous infrared search and track system.

Propulsion for the short range air-to-air missile

A low signature rocket motor is fitted to drive the ASRAAM short range missile. It provides superior acceleration and range throughout the flight. The motor also allows ASRAAM to quickly intercept any target and gives it a speed of about Mach 3.

The Common Anti-air Modular Missile (CAMM): Details

IRIS-T missile

IRIS-T missile short-range air-to-air missiles Brimstone anti-tank missiles

USAF reveals slimmed-down SACM air-to-air missile concept: HERE

lockheed_martin_bastelt_revolutionaerer_lockheedscuda-aam_0120121220182134Cuda @alternathistory.comJoint Standoff Weapon (JSOW)1341327745874964582 Terma A/S multi-mission pod (MMP) could be used for different equipment and purposes, such as electronic warfare, aerial reconnaissance, or rear-facing tactical radar.

Lockheed Martin states that the weapons load can be configured as all-air-to-ground or all-air-to-air, and has suggested that a Block 5 version will carry three weapons per bay instead of two, replacing the heavy bomb with two smaller weapons such as AIM-120 AMRAAM air-to-air missiles. Upgrades are to allow each weapons bay to carry four GBU-39 Small Diameter Bombs (SDB) for A and C models, or three in F-35B.  Another option is four GBU-53/B Small Diameter Bomb IIs in each bay on all F-35 variants.  The F-35A has been outfitted with four SDB II bombs and an AMRAAM missile to test adequate bay door clearance, as well as the C-model, but the VTOL F-35B will not be able to carry the required load of four SDB IIs in each weapons bay upon reaching IOC due to weight and dimension constraints; F-35B bay changes are to be incorporated to increase SDB II loadout around 2022 in line with the Block 4 weapons suite. The Meteor (missile) air-to-air missile may be adapted for the F-35, a modified Meteor with smaller tailfins for the F-35 was revealed in September 2010; plans call for the carriage of four Meteors internally. The United Kingdom planned to use up to four AIM-132 ASRAAM missiles internally, later plans call for the carriage of two internal and two external ASRAAMs. The external ASRAAMs are planned to be carried on “stealthy” pylons; the missile allows attacks to slightly beyond visual range without employing radar.

Norway and Australia are funding an adaptation of the Naval Strike Missile (NSM) for the F-35. Under the designation Joint Strike Missile (JSM), it is to be the only cruise missile to fit the F-35’s internal bays; according to studies two JSMs can be carried internally with an additional four externally.

The F-35 is expected to take on the Wild Weasel mission, though there are no planned anti-radiation missiles for internal carriage. The B61 nuclear bomb was initially scheduled for deployment in 2017; as of 2012 it was expected to be in the early 2020s, and in 2014 Congress moved to cut funding for the needed weapons integration work. Norton A. Schwartz agreed with the move and said that “F-35 investment dollars should realign to the long-range strike bomber “NATO partners who are buying the F-35 but cannot afford to make them dual-capable want the USAF to fund the conversions to allow their Lightning IIs to carry thermonuclear weapons. The USAF is trying to convince NATO partners who can afford the conversions to contribute to funding for those that cannot. The F-35 Block 4B will be able to carry two B61 nuclear bombs internally by 2024.

Stealth and signatures

 The F-35 has been designed to have a low radar cross-section primarily due to the shape of the aircraft and the use of stealthy radar-absorbent materials in its construction, including fiber-mat. Unlike the previous generation of fighters, the F-35 was designed for very-low-observable characteristics. Besides radar stealth measures, the F-35 incorporates infrared signature and visual signature reduction measures.

The small bumps just forward of the engine air intakes form part of the diverterless supersonic inlet (DSI) which is a simpler, lighter means to ensure high-quality airflow to the engine over a wide range of conditions. These inlets also crucially improve the aircraft’s very-low-observable characteristics (by eliminating radar reflections between the diverter and the aircraft’s skin). Additionally, the “bump” surface reduces the engine’s exposure to radar, significantly reducing a strong source of radar reflection because they provide an additional shielding of engine fans against radar waves. The Y-duct type air intake ramps also help in reducing radar cross-section (RCS), because the intakes run parallel and not directly into the engine fans.

The F-35’s radar-absorbent materials are designed to be more durable and less maintenance-intensive than those of its predecessors. At optimal frequencies, the F-35 compares favorably to the F-22 in stealth, according to General Mike Hostage, Commander of the Air Combat Command. Like other stealth fighters, however, the F-35 is more susceptible to detection by Low-frequency radars due to the Rayleigh scattering resulting from the aircraft’s physical size. However, such radars are also conspicuous, susceptible to clutter, and have low precision. Although fighter-sized stealth aircraft could be detected by low-frequency radar, missile lock and targeting sensors primarily operate in the X-band, which F-35 RCS reduction is made for, so they cannot engage unless at close range. Because the aircraft’s shape is important to the RCS, special care must be taken to match the “boilerplate” during production. Ground crews require Repair Verification Radar (RVR) test sets to verify the RCS after performing repairs, which is not a concern for non-stealth aircraft.



The F-35 features a full-panel-width glass cockpit touchscreen  “panoramic cockpit display”  (PCD), with dimensions of 20 by 8 inches (50 by 20 centimeters). A cockpit speech-recognition system (DVI) provided by Adacel has been adopted on the F-35 and the aircraft will be the first operational U.S. fixed-wing aircraft to employ this DVI system, although similar systems have been used on the AV-8B Harrier II and trialled in previous aircraft, such as the F-16 VISTA.

See details of Gen III helmet: HERE

A helmet-mounted display system (HMDS) will be fitted to all models of the F-35. While some fighters have offered HMDS along with a head up display (HUD), this will be the first time in several decades that a front line fighter has been designed without a HUD. The F-35 is equipped with a right-hand HOTAS side stick controller. The Martin-Baker US16E ejection seat is used in all F-35 variants.

Martin-Baker US16E ejection seat

The US16E seat design balances major performance requirements, including safe-terrain-clearance limits, pilot-load limits, and pilot size; it uses a twin-catapult system housed in side rails. This industry standard ejection seat can cause the heavier than usual helmet to inflict serious injury on lightweight pilots. The F-35 employs an oxygen system derived from the F-22’s own system, which has been involved in multiple hypoxia incidents on that aircraft; unlike the F-22, the flight profile of the F-35 is similar to other fighters that routinely use such systems.

Sensors and avionics

Electro-optical target system (EOTS) under the nose of the F-35

The F-35’s sensor and communications suite has situational awareness, command and control and network-centric warfare capabilities. The main sensor on board is the AN/APG-81 Active electronically scanned array-radar, designed by Northrop Grumman Electronic Systems.  It is augmented by the nose-mounted Electro-Optical Targeting System (EOTS), it provides the capabilities of an externally mounted Sniper Advanced Targeting Pod pod with a reduced radar cross-section.

AN/APG-81 Active electronically scanned array-radar

The AN/ASQ-239 (Barracuda) system is an improved version of the F-22’s AN/ALR-94 electronic warfare suite, providing sensor fusion of Radio frequency and Infrared tracking functions, advanced radar warning receiver including geolocation targeting of threats, multispectral image countermeasures for self-defense against missiles, situational awareness and electronic surveillance, employing 10 radio frequency antennae embedded into the edges of the wing and tail. In September 2015, Lockheed unveiled the “Advanced EOTS” that offers short-wave infrared, high-definition television, infrared marker, and superior image detector resolution capabilities. Offered for the Block 4 configuration, it fits into the same area as the baseline EOTS with minimal changes while preserving stealth features.

Six additional passive infrared sensors are distributed over the aircraft as part of Northrop Grumman‘s electro-optical AN/AAQ-37 Distributed Aperture System (DAS), which acts as a missile warning system, reports missile launch locations, detects and tracks approaching aircraft spherically around the F-35, and replaces traditional night vision devices. All DAS functions are performed simultaneously, in every direction, at all times. The electronic warfare systems are designed by BAE Systems and include Northrop Grumman components. Functions such as the Electro-Optical Targeting System and the electronic warfare system are not usually integrated on fighters. The F-35’s DAS is so sensitive, it reportedly detected the launch of an air-to-air missile in a training exercise from 1,200 mi (1,900 km) away, which in combat would give away the location of an enemy aircraft even if it had a very low radar cross-section.

The electronic warfare and electro-optical systems are intended to detect and scan aircraft, allowing engagement or evasion of a hostile aircraft prior to being detected. The CATbird avionics testbed has proved capable of detecting and jamming radars, including the F-22’s AN/APG-77. The F-35 was previously considered a platform for the Next Generation Jammer; attention shifted to using unmanned aircraft in this capacity instead. Several subsystems use Xilinx FPGAs; these COTS components enable supply refreshes from the commercial sector and fleet software upgrades for the software-defined radio systems.

Helmet-mounted display system

VSI Helmet-mounted display system for the F-35

The F-35 does not need to be physically pointing at its target for weapons to be successful. Sensors can track and target a nearby aircraft from any orientation, provide the information to the pilot through their helmet (and therefore visible no matter which way the pilot is looking), and provide the seeker-head of a missile with sufficient information. Recent missile types provide a much greater ability to pursue a target regardless of the launch orientation, called “High Off-Boresight” capability. Sensors use combined radio frequency and infra red (SAIRST) to continually track nearby aircraft while the pilot’s helmet-mounted display system (HMDS) displays and selects targets; the helmet system replaces the display-suite-mounted head-up display used in earlier fighters. Each helmet costs $400,000.


In July 2015, an F-35 pilot commented that the helmet may have been one of the issues that the F-35 faced while dogfighting against an F-16 during a test; “The helmet was too large for the space inside the canopy to adequately see behind the aircraft. There were multiple occasions when the bandit would’ve been visible (not blocked by the seat) but the helmet prevented getting in a position to see him (behind the high side of the seat, around the inside of the seat, or high near the lift vector).


The F-35A is the conventional takeoff and landing (CTOL) variant intended for the U.S. Air Force and other air forces. It is the smallest, lightest F-35 version and is the only variant equipped with an internal cannon, the GAU-22/A. This 25 mm cannon is a development of the GAU-12 carried by the USMC’s AV-8B Harrier II. It is designed for increased effectiveness against ground targets compared to the 20 mm M61 Vulcan cannon carried by other USAF fighters.


The F-35B is the short takeoff and vertical landing (STOVL) variant of the aircraft. Similar in size to the A variant, the B sacrifices about a third of the other version’s fuel volume to accommodate the vertical flight system. Vertical takeoffs and landings are riskier due to threats such as foreign object damage. Whereas the F-35A is stressed to 9 g, the F-35B’s stress goal is 7 g. As of 2014, the F-35B is limited to 4.5 g and 400 knots. Next software upgrade includes weapons, 5.5 g and Mach 1.2, with a final target of 7 g and Mach 1.6. The first test flight of the F-35B was conducted on 11 June 2008. Another milestone, the first successful ski-jump launch was carried out by BAE test pilot Peter Wilson on 24 June 2015.

The United States Marine Corps plans to purchase 340 F-35Bs, to replace current inventories of both the F/A-18 Hornet (A, B, C and D-models), and the AV-8B Harrier II, in the fighter and attack roles.



Compared to the F-35A, the F-35C carrier variant features larger wings with foldable wingtip sections, larger wing and tail control surfaces for improved low-speed control, stronger landing gear for the stresses of carrier arrested landings, a twin-wheel nose gear, and a stronger tailhook for use with carrier arrestor cables. The larger wing area allows for decreased landing speed while increasing both range and payload.

The United States Navy intends to buy 480 F-35Cs to replace the F/A-18A, B, C, and D Hornets and complement the Super Hornet fleet.

Other versions


The F-35I is an F-35A with Israeli modifications. A senior Israel Air Force official stated “the aircraft will be designated F-35I, as there will be unique Israeli features installed in them”. Despite an initial refusal to allow such modifications, the U.S. has agreed to let Israel integrate its own electronic warfare systems, such as sensors and countermeasures, into the aircraft. The main computer will have a plug-and-play feature to allow add-on Israeli electronics to be used; proposed systems include an external jamming pod, and new Israeli air-to-air missiles and guided bombs in the internal weapon bays. Israeli pilots are scheduled to start F-35 training in December 2016 at Eglin AFB Florida with the first squadron activated about a year later.

Israel Aerospace Industries (IAI) has developed its own (C4) system for the F-35: HERE



Israel Aerospace Industries (IAI) has considered playing a role in the development of a proposed two-seat F-35; an IAI executive stated: “There is a known demand for two seats not only from Israel but from other air forces.” IAI plans to produce conformal fuel tanks. A senior IAF official stated that elements of the F-35’s stealth may be overcome in 5 to 10 years, while the aircraft will be in service for 30 to 40 years, which is why Israel insisted on installing their own electronic warfare systems: “The basic F-35 design is OK. We can make do with adding integrated software.” Israel is interested in purchasing up to 75 F-35s.

Israel’s new F-35 ‘Adir’ takes to the skies: Here


The Canadian CF-35 is a proposed variant that would differ from the F-35A through the addition of a drogue parachute and may include an F-35B/C-style refueling probe. In 2012, it was revealed that the CF-35 would employ the same boom refueling system as the F-35A. One alternative proposal would have been the adoption of the F-35C for its probe refueling and lower landing speed; the Parliamentary Budget Officer’s report cited the F-35C’s limited performance and payload as being too high a price to pay.Following the 2015 Federal Election, in which the Liberal Party, whose campaign had included a pledge to cancel the F-35 procurement, won a majority in the House of Commons, and stated it would run a new competition for an aircraft to replace the existing CF-18 Hornet.


Early-stage design study for a possible upgrade of the F-35A to be fielded by the 2035 target date of the Air Force Future Operating Concept.


  • Israeli Air Force (F-35A: 33 ordered, first 2 to be delivered in 2016; up to 75 total planned)






 Republic of Korea

  • Turkish Air Force (F-35A: 6 ordered as of 2015, 100 total planned with an additional 20 options)
 United Kingdom (F-35: 138 planned; F-35B: 4 delivered and in testing, 10 additional ordered, 48 total planned by 2023)
 United States


Specifications (F-35A)

Data from Lockheed Martin specifications, F-35 Program brief, F-35 JSF Statistics F-35 Program Status

General characteristics


  • Maximum speed: Mach 1.6+ (1,200 mph, 1,930 km/h) (tested to Mach 1.61)
  • Range: 1,200 nmi (2,220 km) on internal fuel
  • Combat radius: 613 nmi (1,135 km) on internal fuel
  • Wing loading: 107.7 lb/ft² (526 kg/m²; 745 kg/m² max loaded)
  • Thrust/weight:
    • With full fuel: 0.87
    • With 50% fuel: 1.07
  • Maximum g-load:g




Source: the net

Updated Sept 15, 2016

Like our FB page World Military Forum

One thought on “Lockheed Martin F-35 Lightning II

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s