HAL Light Combat Helicopter (LCH), India – Update I


The light combat helicopter (LCH) was designed and built by Hindustan Aeronautical Limited (HAL). It is an attack helicopter derived from the existing Dhruv helicopter.

The LCH can be deployed in various roles, including tracking slow-moving aerial targets, insurgency, destroying enemy defences, search and rescue, anti-tank and scouting. A datalink system transmits mission data to mobile platforms and ground stations operating within the network.


The LCH was developed to meet the requirements of the Indian Air Force and the Indian Army, who have ordered 62 and 114 units respectively. Its maiden flight took place in Bangalore in March 2010.

The Indian Air Force will procure 64 LCHs as part of a $4bn contract signed with Hindustan Aeronautics in March 2011. The helicopters will be armed with Helina missile with an extended range of 7km, a missile warning system and anti-missile countermeasures. Deliveries are scheduled to take place between 2013 and 2014.


HAL light combat helicopter design

The LCH is effective as both an anti-infantry and anti-armour helicopter. Main and tail rotor diameters are 13.3m and 2.05m respectively. The two-seater craft also has a tricycle crashworthy wheel landing gear and stealth capabilities. The flight controls and hydraulics of Dhruv have been redesigned for the LCH.


The helicopter is equipped with electronic warfare systems and advanced weapons systems, including a chin-mounted, twin-barrel M621 20mm cannon on a Nexter THL-20 turret, 70mm rockets, MBDA air-to-air, air-to-surface and anti-radiation missiles, and Helina anti-tank guided missiles. Explosive ordnance includes iron bombs, cluster bombs and grenade launchers.

M621 20mm cannon


The M621 is a French 20 mm automatic cannon, designed by GIAT (now Nexter Systems). It is used on armored vehicles, aircrafts, helicopters and small coastal vessels in France, India, Romania and other countries. Its variants include THL 20, chin mounting for helicopters; SH 20, door mounting for helicopters; CP 20, pintle-mounted naval gun, and others. The gun entered service in 1973 and is still in service today.


  • Type: Automatic gun
  • Calibre: 20×102 mm
  • Gun Weight: 100.3 lbs (45.5 kg)
  • Gun Length: 86.9 in (220.7 cm)
  • Bore Length: 57.5 in (146 cm)
  • Capacity: Belt fed, platform dependent capacity (160 for model 15A naval mounting, 300-750 for THL 20)
  • Rate of fire: 750 rpm
  • Muzzle velocity: 980-1030 m/s depending on ammunition type

Source @imfdb.org

f0Hgr0m.jpgM621 20mm cannon on a Nexter THL-20 turretmaxresdefaultLCH_config

Helina anti-tank guided missile

Indian_Anti-Tank HELINA_Nag MissileIndian Helina anti-tank guided missiles

The Nag (Hindi for “Cobra”) is an Indian indigenously developed anti-tank missile. It was developed by DRDO – India’s premier defence agency. This missiles enables the Indian Armed Forces to destroy tanks up to the distance of 4 km. The Nag is comparable to the FGM-148 Javelin, Spike or PARS 3LR.

The missile was developed under Integrated Guided Missile Development Program (IGMDP) which was first initiated in 1982 by Dr. APJ Abdul Kalam. Under this program various missiles were developed which includes – Agni, Akash, Nag,Prithvi and Trishul. The program was approved by the Prime Minister and her Scientific Team in 1980 and Dr. APJ Abdul Kalam was inducted to lead the program.

The Nag is a 3rd generation fire-and-forget type missile. It has an 8 kg tandem HEAT warhead. The Nag is a top attack missile. During flight it when approaching the target it flies upwards and then suddenly dives towards the target. This method of attack is very suitable to destroy tanks, because most of them have only a minimum level of armor protection in the upper part of the turret. The Nag can penetrate the latest generation armor, like explosive reactive armor and composite armor.

helina launcher 2Image @defence.pk

For guidance the Nag uses imagining infrared passive seeker system which is difficult to jam. The guidance system is also equipped with a CCD camera. Before the launch missile locks on the infrared image of the target. In flight it automatically guides itself onto the target. Hit probability with a single missile is 77%.

The body of the missile is fully made of fiberglass structure. The rocket motor of the missile uses nitramene-based double base sustainer propellant which is smokeless and makes hard to trace the shooter. Missile has a flight speed of 230 m/s.

The Nag is used by the missile carrier known as the NAMICA. There is also a helicopter based version known as HELINA (HELIcopter NAg). The NAMICA version uses a ‘lock on before launch’ system which means that the missile locks on to a target and is then launched. However the HELINA version uses ‘lock on after launch’ system so the range of the missile is extended to 7 km. The HELINA variant of this missile is on the verge of completing its trail. The HELINA missile was test fired in July 2015 near Jaisalmer, India. It hit 2 out of 3 targets. Source @military-today.com

Lahat ATGM

800px-LAHATLahat ATGM

Late in 1998, Israel Aircraft Industries, MBT weapon Systems Division, revealed that it had developed, under contract to the Israel Defence Force, a new laser-guided anti-tank missile called the LAHAT (LAser Homing Anti-Tank) which can be fired from existing 105 mm and 120 mm tank guns.


IAI believes the LAHAT missile, a gun launched projectile designed to destroy armoured vehicles as well as helicopters, is a cost-effective way for countries to update their existing 105 mm fleets that are becoming outgunned on the battlefield.

For the United States market, Israel Aircraft Industries, MBT Weapon Systems Division, has teamed with General Dynamics Ordnance Systems of the United Siates.

To defeat MBTs fitted with explosive reactive armour the LAHAT missile includes a tandem High Explosive Anti-Tank (HEAT) and is claimed to have a high angle of attack for effective armour penetration. Source @army-guide.com

Weight 13 kg (28.7 lb)
Length 975 mm (38.4 in)
Diameter 105 mm (4.1 in)
Warhead Tandem HEAT
Warhead weight 10 kg (22.0 lb)

6,000–8,000 m (6,600–8,700 yd)
8,000–13,000 m (8,700–14,200 yd) air launched
Speed 285–300 m/s (940–980 ft/s)
Semi-Active Laser Homing
105–120 mm smooth bore
rotary-wing aircraft

Specification data @wikipedia.org

HAL’s LCH passes rocket trials; will participate in ‘Iron Fist’ exercise: Here

2a.jpgImage @etimg.com


The LCH has a glass cockpit accommodating two crew, who sit one behind the other. The cockpit is equipped with multifunction displays, target acquisition and designation systems, and a digital video recorder to capture footage of the battlefield for use in debriefing. A helmet-mounted target system controls the turret guns mounted on the helicopter’s fuselage.

1287114447_PIC_0638P1010133-734233.JPGLCH New 3-723160

Sensors and countermeasures

The LCH is also equipped with state-of-the-art sensor suite. It includes a charge-coupled device camera, a forward-looking infra-red camera and a laser designator. The two cameras capture the location and position of enemies, ensuring clear visibility during bad weather conditions. The laser range-finder and designator aim laser-guided bombs and missiles towards the target.


The helicopter is also fitted with radar and laser warning receivers, a missile approach warning system, countermeasure dispensing systems and a missile jammer.

0HAL Light Combat Helicopter (LCH) attach gunship missle combat helicopter army in India by Hindustan Aeronautics Limited (4)


The helicopter is powered by two HAL/Turbomeca Shakti turboshaft engines, each of which can generate up to 871kW and can run for up to 3,000 hours without maintenance. Each engine weighs 205kg and has an output speed of 21,000rpm.

HAL/Turbomeca Shakti turboshaft engine

Turbomeca_Shakti_EngineImage @indiandefensenews.in

The Turbomeca Ardiden is a family of turboshaft engines featuring simple, modular and compact design. They are built around a gas generator with two centrifugal compressor stages, coupled to a single-stage high-pressure turbine. The power turbine comprises two stages. The engine is controlled by a dual-channel Engine Electronic Control Unit (EECU). The Ardiden engines offer very low cost of maintenance and ownership. Developing from 1,200 to 2,000 shp of maximum power, the engine is suitable to power helicopters in the five to eight tons class. Besides, the Ardiden engines satisfy the most demanding mission requirements, while retaining full performance under high altitude and hot temperature conditions.

The Shakti, also known as Ardiden 1H1, is a turboshaft engine jointly developed by Turbomeca (France) and Hindustan Aeronautics Limited (HAL) based on the Ardiden turboshaft to power weaponized variants of the Dhruv Advanced Light Helicopter (ALH).


Emergency Power: 1,204 kW (1,614 hp)

Max Continuous Power: 880 kW (1,180 hp)

Max Power at TakeOff: 1,053 kW (1,412 hp)

OEI 2 min: 1,099 kW (1,473 shp)

OEI Continuous: 1,024 kW (1,373 shp)


Time Between Overhaul: 3,000 hour


Dry Weight: 180 kilogram (397 pound)

Engine data @deagel.com

The engine received European Aviation Safety Agency certification in 2007. It features a Full Authority Digital Electronic Control system, which decreases the work of the pilot by automatically counting engine cycles.

d.jpgImage @Photos: HAL HQ


The LCH has a cruise speed of 260km/h and a max speed of 275km/h. Its never-exceed speed is 330km/h. It can climb at a rate of 12m/s, and hits its maximum and altitude and service ceiling at 2,743m and 6,500m respectively. The helicopter has a ferry range of 700km.

hal_lch_dra.jpgImage @helis.com0003LCH_COMPARISONTable @livefist.blogspot.com

Source: Air Force Technology, Wikiwand.com

Updated on July 31, 2016

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s