F-16 E/F Block 60 Desert Falcon

For a long time, it was uncertain if there would be a Block 60/62 version of the F-16C/D. However, in 1994 the United Arab Emirates (UAE) indicated that they needed 80 long-range strike fighters. The UAE wanted the latest available technology incorporated into these planes, and they indicated that if the USA was not willing to release such technologies, they might consider such competitors as the Eurofighter and the Dassault Rafale.

In pursuit of the UAE contract, Lockheed Martin came up with a delta-winged design based largely on the F-16XL. Wingroot troughs could hold four AIM-120 AMRAAM missiles, and a thrust-vectoring General Electric F110 engine was proposed. The delta-winged F-16 was to carry an improved radar, an internal FLIR and laser designation system, and an improved cockpit with a much more advanced set of multi-function and liquid-crystal displays.

However, very early on Lockheed Martin began to develop second thoughts about such an advanced aircraft, and began to consider a more conventional design for the UAE. The UAE had indicated that they were reluctant to commit themselves to an untried aircraft, one which had no other customers and in particular one in which the USAF was uninterested. By this time, the Pentagon had indicated that they were interested in the Joint Advanced Strike Technology (JAST) project as a potential replacement for the F-16. Lockheed Martin was a contender for the JAST project, and since the delta-winged F-16 could outperform the JAST in virtually every aspect except stealth and for considerably less money, the company might end up competing against itself. The delta-winged F-16 project was quietly shelved.

Lockheed then proposed a Block 60/62 lot of F-16C/Ds for the UAE order. The Block 60/62 would be largely based on the earlier Block 50/52, but would have an internal targeting and navigation system similar to LANTIRN but with only the sensor heads outside the aircraft. However, the Block 60/62 designation would not be applied until the aircraft actually enter production.

Again, two alternative engines would be offered. The Block 60 would be powered by the General Electric F110-GE-129EFE (Enhanced Fighter Engine), which would offer 34,000 lb.s.t with possible growth to 36,000 lb.s.t. The Block 62 would be powered by the Pratt & Whitney F100-PW-229A which offers 32,000 lb.s.t, with possible growth to 35,900 lb.s.t. Both of these engines are available with thrust vectoring.

The Block 60/62 will be equipped with a Northrop Grumman sensor suite that will be based on the APG-68(V)5 radar. It is an integrated system that will have an internal targeting and navigation system similar to LANTIRN but with only the sensor heads outside the aircraft. The Northrop Grumman AN/APG-80 Agile Beam Radar (ABR) will be provided which will have an active array with a large number of transmit/receive modules This beam can be steered almost instantaneously, making it possible to interleave various radar modes. For example, the radar could search for surface targets and do terrain-following while simultaneously searching for airborne threats.

The cockpit will have the backup electromechanical instruments removed, and three full-color displays will be added.

An attempt will be made to use commercially-available products such as PowerPC and Pentium processors, and the Ethernet databus will be used.

After two years of negotiations (including a controversy of whether computer software codes would be released), the UAE signed contracts on March 5, 2000 for 55 single seat and 25 two-seat Block 60 F-16s. These planes would be known as Desert Falcon. On March 14, it was announced that the powerplant would be the General Electric F110-GE-132, an uprated version of the existing F-16 engine which can deliver 32,000 lb.s.t.

The Block 60 also includes new conformal fuel tanks which significantly extend the aircraft’s range, with less drag than underwing drop tanks.

In 2003, the Block 60 was redesignated F-16E/F, in recognition of the major structural, avionics and propulsion system advancements, which make the Block 60 a practically new version of the F-16. They are also known as “Desert Falcons”, in recognition of their first customer.

The first of 80 Block 60 F-16s for the United Arab Emirates Air Force made its maiden flight at Fort Worth on December 6, 2003. It bore the serial 3001 and wore the civil registration of N161LM. Flight testing by Lockheed Martan began in early 2004.

Source joebaugher.com

pmfp755

UAEAF Inventory

Program Model Block Qty. Serials Delivered
Initial Order F-16E Block 60 55 3026/3080 2004-2006
F-16F Block 60 25 3001/3025 2003-2006

Source f-16.net

The most advanced F-16s in the world aren’t American. That distinction belongs to the UAE, whose F-16 E/F Block 60s are a half-generation ahead of the F-16 C/D Block 50/52+ aircraft that form the backbone of the US Air Force, and of many other fleets around the world. The Block 60 has been described as a lower-budget alternative to the F-35A Joint Strike Fighter, and there’s a solid argument to be made that their performance figures and broad sensor array will even keep them ahead of pending F-16 modernizations in countries like Taiwan, South Korea, and Singapore.

See details of F-16C/D: HERE

3038_001

The UAE invested in the “Desert Falcon’s” development, and the contract reportedly includes royalty fees if other countries buy it. Investment doesn’t end when the fighters are delivered, either. Money is still needed for ongoing training, fielding, and equipment needs – and the UAE has decided that they need more planes, too. This DID article showcases the F-16 Block 60/61, and offers a window into its associated costs and life cycle, including dedicated equipment purchases for this fighter fleet.

The F-16E/F “Desert Falcon”

The F-16 has become what its designers intended it to be: a worthy successor to the legendary P-51 Mustang whose principles of visibility, agility, and pilot-friendliness informed the Falcon’s original design. The planes have been produced in several countries around the world, thanks to licensing agreements, and upgrades have kept F-16s popular. It’s no exaggeration to call the F-16 the defining fighter of its age, the plane that many people around the world think of when they think “fighter.” They remain the American defense industry’s greatest export success story of the last 40 years, but the aircraft’s ability to handle future adversaries like the thrust-vectoring MiG-29OVT/35 and advanced surface-air missile systems is now in question.

5191725979_f6c0a319c4_z

The F-16 has now undergone 6 major block changes since its inception in the late 1970s, incorporating 4 generations of core avionics, 5 engine versions divided between 2 basic models (P&W F100 and GE F110), 5 radar versions, 5 electronic warfare suites, and 2 generations of most other subsystems. Moore’s Law applies as well, albeit more slowly: the latest F-16’s core computer suite has over 2,000 times the memory, and over 260 times the throughput, of the original production F-16.

Block 60: Technical

Each new iteration of the fighter costs money to develop, integrate, and test. The UAE invested almost $3 billion into research and development for the F-16 E/F Block 60 Desert Falcon. First flight took place in December 2003, and flight testing by Lockheed Martin began in early 2004. UAE pilot training on the F-16E/F began at Tucson Air National Guard Base, AZ in September 2004, and the first group of pilots completed their training in April 2005. The first Desert Falcons arrived in the UAE in May 2005.

UAE_F-16E_3075_2374

All of the initial 60 aircraft have been delivered, and all training now takes place in the UAE. Versions of this aircraft have been entered in a number of international export competitions as well, including Brazil’s F-X2 (eliminated) and India’s MMRCA (eliminated), but it hasn’t found any buyers yet. Production will restart soon anyway, thanks to the UAE’s impending add-on buy 30 F-16 E/F Block 61s with minor component upgrades.

The aircraft’s advanced avionics suite has room available for future improvements. The Block 60’s modular mission computer has a processing throughput of 12.5 million instructions per second and provides sensor and weapons integration.

The ALQ-165 electronic countermeasures system, also known as the Airborne Self-Protection Jammer (ASPJ), is a sophisticated, high-power jamming system developed to fulfill both U.S. Navy and Air Force requirements – although the USAF abandonned the program a while ago. Missile warning systems on the Block 60 provide advanced warning of approaching missiles so the pilot can activate countermeasures in time. The Block 60 F-16 can accommodate both active and passive missile warning systems currently under development. Source f-16.net

AN/ALQ-165 Airborne Self-Protection Jammer (ASPJ)

hero_an-10070

Design & Powerplant

The aircraft’s conformal fuel tanks (CFTs) let them carry more fuel, with less drag than underwing drop tanks. All that fuel feeds GE’s new F110-GE-132 engine, which produces up to 32,500 pounds of thrust to offset the plane’s increased weight. The -132 is a derivative of the proven F110-GE-129, a 29,000-pound thrust class engine that powers the majority of F-16 C/D fighters worldwide. Even with a bigger engine and more weight from added sensors, CFTs, etc., Block 60 fighters offer a mission radius of 1,025 miles – a 40% range increase over F-16s without CFTs.

Conformal fuel tanks (CFTs)

MINOLTA DIGITAL CAMERAF-16UAE11Conformal fuel tanks (CFTs) let them carry more fuel, with less drag than underwing drop tanks

GE’s new F110-GE-132 engine

p0583600GE’s new F110-GE-132 engine, which produces up to 32,500 pounds of thrust

The F110 was developed utilizing the same core design of the F101 engine. This engine has different fan and afterburner packages to tailor engine performance compared with the F101 engine.

The F110-GE-132 is the latest and most advanced member of the F110 engine family yielding 32,000 pounds of thrust. Derived from the F110-GE-129, this engine incorporates some advanced technologies related to both the F414 and F120 engines. As a result of that, -132 has an increased combat performance over -129 and lower total ownership costs.

The F110-GE-132 utilizes General Electric Aircraft Engines (GEAE)’s extensive technology base, including: a long-chord blisk fan derived from the F118 engine, a radial afterburner derived from the F414 engine and enhanced for the F136 engine (Joint Strike Fighter), and a composite outer duct based on the F404 and F414 engines. In the future, GEAE plans to infuse a new core developed to extend the service life of the engine thus increasing durability and time on wing.

The F110-GE-132 engine was developed to power the F-16C/D Block 60 or F-16E/F aircraft ordered by the United Arab Emirates (UAE) Air Force.

Dimensions

  • Fan Diameter: 1,170 millimeter
  • Length: 4.60 meter

Weight

  • Dry Weight: 1,819 kilogram (4,010 pound)
  • Thrust: 32,500 pound (14,742 kilogram)

Source deagel.com

1109399_800

Conformal tanks aren’t exclusive to the Block 60. They’re options for many F-16 variants, and can be removed before missions, but that may not be a great idea for the UAE’s fleet. It’s a classic give/take scenario, in which more capability (q.v. electronics) means more weight, which requires a larger engine, which shortens range without more fuel. The conformal tanks more than make up that difference, creating a formidable strike fighter, but they exact their own aerodynamic cost in acceleration and handling. That tradeoff hurt attempts to export the fighter to India’s IAF, which prioritized maneuvering performance and left the Desert Falcon off of their shortlist.

Electronics

6542233_original

AN/APG-80 AESA radar

AN/APG-80 is Northrop-Grumman’s AESA radar which developed for export with F-16E/F block 60 and intended for 4th gen. fighters modernization programs too. In comparison with older slotted array F-16C/D radar AN/AGP-68(V)7 the range of fly target detection is as twice as longer while synthetic aperture mode is added for ground strike capability.

Style of antenna:

  • APG-80: AESA, 1,000 T/R

Effective tracking range for RCS = 1 m2 target

  • APG-80: 110~120 km

Horizontal tracking angles

  • APG-80: +/- 60 degrees

Target number of TWS at the same time:

  • APG-80: 20 (now) ~ 50 (potential in the future) targets

Performing A-A and A-G modes at the same time:

  • APG-80: Yes

LPI capability:

  • APG-80: Yes

High speed capability of Data-link/communication:

  • APG-80: No

Advanced functions for Microwave-weapon / CPU virus spreader/ Net-Hacker:

  • APG-80: No

MTBF (mean time between failures)

  • APG-80: 500~800 hrs

Source igorrgroup.blogspot.com

The Desert Falcons’ most significant changes are electronic. Northrop Grumman’s AN/APG-80 AESA radar is the most significant advance, and made the UAE the first fighter force in the world to field this revolutionary new radar technology outside of the USA. Compared to mechanically-scanned arrays like the AN/APG-68v9s that equip advanced American and foreign F-16s, AESA radars like the APG-80 have more power, better range, less sidelobe “leakage,” near-100% combat availability, and more potential add-on capabilities via software improvements. Unlike the APG-68s, the APG-80 can perform simultaneous ground and air scan, track, and targeting, and it adds an “agile beam” that reduces the odds of detection by opposing aircraft when the radar is on.

This last feature is important. Seeing the enemy first remains every bit as significant as it was in Boelcke’s day, but the inverse square law for propagation means that turning on older radar design is like activating a flashlight in a large and dark building. It can be seen much farther away than it can illuminate. An agile-beam AESA radar largely negates that disadvantage, while illuminating enemies who may not have their own radars on.

FLIR targeting system (IFTS)

f-16inb-1

The planned under-nose integrated FLIR targeting system (IFTS) has been replaced by a new podded FLIR mounted on the intake hardpoints. Apparently, there were problems in achieving the promised performance with the original layout. The Northrop Grumman AAQ-32 targeting FLIR and laser designator has been repackaged in a new station. However, the original wide-area navigation FLIR housing above the nose will still be there. Source joebaugher.com

Northrop Grumman AAQ-32 targeting FLIR and laser designator

ifts

The IFTS provides 24-hour precision strike and navigation capabilities. It detects and identifies both ground and airborne targets, even at night or in adverse weather, for highly accurate weapons delivery. Source northropgrumman.com

The Desert Falcons also take a step beyond the standard ground surveillance and targeting pod systems fielded on other F-16s, by incorporating them into the aircraft itself. Northrop Grumman’s AN/ASQ-32 IFTS is derived from its work on the AN/AQS-28 LITENING AT, but internal carriage reduces drag and radar signature, and frees up a weapons pylon. The ASQ-32 can even be used to find aerial targets, allowing passive targeting, and offering a tracking option that radar stealth won’t evade.

JHMCS helmet

 

JHMCS helmet

A JHMCS helmet mounted display provides parity with the fighter’s most modern counterparts, and displays information from the aircraft’s radar and sensors wherever the pilot looks. Its real advantage is that it creates a much larger targeting zone, which can be fully exploited by the newest air-to-air missiles like the AIM-9X. Avionics improvements round out the enhancements via an advanced mission computer to enhance sensor and weapon integration, a trio of 5″x7″ color displays in the cockpit, etc.

Avionics improvements round out the enhancements via an advanced mission computer to enhance sensor and weapon integration, a trio of 5″x7″ color displays in the cockpitf_16e_block_60_landing_approach_to_tanagra_by_roen911-d5nyf2oRear seat F16F

Various advanced electronic countermeasures systems make up the Falcon Edge Integrated Electronic Warfare System (IEWS), which provides both advance warning capabilities and automatic countermeasures release.

Weapons

3038

F-16s have an extremely wide range of integrated weapons, but Mideast politics has kept some American weapons from the UAE’s hands. Their Desert Falcons won’t carry the same stealthy AGM-158 JASSM long-range, stealthy cruise missiles found on American F-16s, for instance. Nor can they carry the similar “Black Shahine” MBDA Storm Shadow derivatives that equip the UAE’s Mirage 2000 fleet.

Mirage 2000: Details

p1473919080-5.jpgMirage 2000-9EAD – UAE – Image: Digital Photography Review10108929b

20mm General Electric M61A1 multi-barrel cannon

Image: f-16.net

Joint Air-to Surface Standoff Missile (JASSM) UAE is not getting

The Joint Air-to Surface Standoff Missile (JASSM) is an autonomous, stealthy, long range conventional, air-to-ground, precision standoff missile which the UAE is not getting

AGM-84H SLAM-ER

slam-er_graphicGPS/IIR-guided AGM-84H SLAM-ER cruise missiles that can deliver accurate hits on ships and land targets up to 250 km away – UAE have received this weapon since 2013

The SLAM-ER (Expanded Response) Block 1F, a major upgrade to the SLAM missile that is currently in production, provides over twice the missile range, target penetration capability, and control range of SLAM. SLAM-ER has a greater range (150+ miles), a titanium warhead for increased penetration, and software improvements which allow the pilot to retarget the impact point of the missile during the terminal phase of attack (about the last five miles). In addition, many expansions are being made to improve performance, survivability, mission planning, and pilot (man-in-the-loop) interface. The SLAM-ER development contract was awarded to McDonnell Douglas Aerospace (Now BOEING) in February of 1995. SLAM-ER achieved its first flight in March of 1997. All Navy SLAM missiles are currently planned to be retrofitted to SLAM-ER configuration. About 500 SLAM missiles will be converted to the SLAM-ER configuration between FY 1997 and FY 2001. Source fas.org

AGM-154C JSOW

AGM-154_Joint_Standoff_Weapon_MainStealthy AGM-154C JSOW glide bombs

The AGM-154A (Formerly Advanced Interdiction Weapon System) is intended to provide a low cost, highly lethal glide weapon with a standoff capability. JSOW family of kinematically efficient, air-to-surface glide weapons, in the 1,000-lb class, provides standoff capabilities from 15 nautical miles (low altitude launch) to 40 nautical miles (high altitude launch). The JSOW will be used against a variety of land and sea targets and will operate from ranges outside enemy point defenses. The JSOW is a launch and leave weapon that employs a tightly coupled Global Positioning System (GPS)/Inertial Navigation System (INS), and is capable of day/night and adverse weather operations.

The JSOW uses inertial and global positioning system for midcourse navigation and imaging infra-red and datalink for terminal homing. The JSOW is just over 13 feet in length and weighs between 1000-1500 pounds. Extra flexibility has been engineered into the AGM-154A by its modular design, which allows several different submunitions, unitary warheads, or non-lethal payloads to be carried. The JSOW will be delivered in three variants, each of which uses a common air vehicle, or truck, while substituting various payloads.

AGM-154A (Baseline JSOW) The warhead of the AGM-154A consists of 145 BLU-97/B submunitions. Each bomblet is designed for multi-target in one payload. The bomblets have a shaped charge for armor defeat capability, a fragmenting case for material destruction, and a zirconium ring for incendiary effects.

AGM-154B (Anti-Armor) The warhead for the AGM-154B is the BLU-108/B from the Air Force’s Sensor Fuzed Weapon (SFW) program. The JSOW will carry six BLU-108/B submunitions. Each submunition releases four projectiles (total of 24 per weapons) that use infrared sensors to detect targets. Upon detection, the projectile detonates, creating an explosively formed, shaped charge capable of penetrating reinforced armor targets.

AGM-154B – Image: media.defenceindustrydaily.com

AGM-154C (Unitary Variant) The AGM-154C will use a combination of an Imaging Infrared (IIR) terminal seeker and a two-way data link to achieve point target accuracy through aimpoint refinement and man-in-the-loop guidance. The AGM-154C will carry the BLU-111/B variant of the MK-82, 500- pound general purpose bomb, equipped with the FMU-152 Joint Programmable Fuze (JPF) and is designed to attack point targets. Source fas.org

GBU-39 Small Diameter Bombs

GBU-39 Small Diameter Bombs

On the other hand, the Desert Falcons’ array of integrated weapons will include medium range, GPS/IIR-guided AGM-84H SLAM-ER cruise missiles that can deliver accurate hits on ships and land targets up to 250 km away. At shorter ranges, stealthy AGM-154C JSOW glide bombs and GBU-39 Small Diameter Bombs give them wide-ranging one-pass attack capabilities against hard targets. In the air, AIM-9X Block II Sidewinder short-range missiles give them over-the-shoulder kill capability, and a combat option that many of the UAE’s neighbors haven’t fielded yet.

AIM-9X Block II Sidewinder

aim9xAIM-9X Block II Sidewinder short-range missiles give them over-the-shoulder kill capability Image: donhollway.com

The current fifth-generation AIM-9X is to the old 9B what humans are to homo erectus. Paired with a pilot’s helmet-mounted display, it can “look” 90 degrees off-boresight for its target and, with three-dimensional vectored-thrust steering, turn 180 degrees in pursuit. One test pilot at Naval Air Station Fallon, Nev., freshly returned from getting every visual-range first-shot “kill” on Top Gun instructors in F-18s and F-14s, enthused, “If you have [a weapons-sight] helmet and AIM-9X, you are King Kong of the air.” 

The latest versions have “lock-on after launch” capability, lending themselves to “cloud shooting,” 360-degree target selection via data link from aircraft other than the launching fighter. Source donhollway.com

Block 60: Political Issues

In the course of development, 2 key issues came up with respect to the F-16 Block 60. One was the familiar issue of source code control for key avionics and electronic warfare systems. The other was weapons carriage.

As a rule, the software source codes that program the electronic-warfare, radar, and data buses on US fighters are too sensitive for export. Instead, the USA sent the UAE “object codes” (similar to APIs), which allow them to add to the F-16’s threat library on their own.

1864724

The other issue concerned the Black Shahine derivative of MBDA’s Storm Shadow stealth cruise missile. The Missile Technology Control Regime (MTCR) defines 300 km as the current limit for cruise missiles, and the terms of the sale allow the United States to regulate which weapons the F-16s can carry. Since the Black Shahine was deemed to have a range of over 300 km, the US State Department refused to let Lockheed Martin change the data bus to permit the F-16E/Fs to carry the missile.

Black Shahine/MBDA’s Storm Shadow

Black Shahine derivative of MBDA’s Storm Shadow stealth cruise missile Since the Black Shahine was deemed to have a range of over 300 km, the US State Department refused to let Lockheed Martin change the data bus to permit the F-16E/Fs to carry the missile

Originated From: FranceUnited Kingdom

Possessed By: FranceGreeceItalySaudi ArabiaUnited Arab EmiratesUnited Kingdom

Alternate Name: Black Shahine

Class: Subsonic

Basing: Air-to-surface

Length: 5.1 m

Launch Weight: 1,300 kg

Payload: 400 kg

Warhead: Tandem HE (BROACH)

Propulsion: Turbojet

Range: 250-400 km

Status: Operational

In Service: 2004

Storm Shadow Cutaway with Annnotations MBDA UK Limited © Copyright 2011SCALP EG/Storm Shadow cruise missile.

In 1991, Matra (later Matra BAe Dynamics, MBDA) proposed a long-range, stand-off variant based on the APACHE design which would have a designated range of 600 km. This variant was originally known as APACHE C, later renamed to APTGD (Armement de Precision Tire á Grande Distance), and was finally deemed the SCALP (Systéme de Croisiére conventional Autonone á Longue Portée de precision). France adopted the SCALP EG (general purpose) variant in 1994. The SCALP EG, which is nearly identical to the Storm Shadow/Black Shaheen, went on to be the basis for the SCALP Naval version.

Due to its relation to the APACHE system, the specifications reflect many similarities. The SCALP EG/Storm Shadow is 5.1 m in length, 0.63/ 0.48 m in body width/height diameter, and 1,300 kg in launch weight. The payload is slightly less than the APACHE at 400 kg. The notable distinction between the APACHE and the SCALP/Storm Shadow missiles are the warhead types and the effective range. The SCALP carries a single HE penetrator warhead, making it a far more versatile system than the submunitions carried by the APACHE. Additionally, the range for the SCALP/Storm Shadow is 250 to 400 km — significantly further than the APACHE’s 140 km. Data missilethreat.com

The Mirage 2000-9 upgrades that the UAE developed with France addressed this issue, giving the UAE a platform capable of handling their new acquisition. As of 2013, UAE F-16E/F fighters have finally received the SLAM-ER precision attack missile, giving them the shorter-range but very accurate strike capabilities.

Source: defenseindustrydaily.com

Updated Jan 14, 2017

uae-f-16e-block-60-desert-falcon_03

YF-16 F-16A F-16C Block 30 F-16E Block 60
Crew

One

Length 48 ft 5 in (14.8 m) 49 ft 6 in (15.1 m) 49 ft 5 in (15.1 m) 49 ft 4 in (15.0 m)
Wingspan 31 ft 0 in (9.45 m) 31 ft 0 in (9.45 m) 31 ft 0 in (9.45 m) 31 ft 0 in (9.45 m)
Height 16 ft 3 in (4.95 m) 16 ft 8 in (5.08 m) 16 ft 8 in (5.08 m) 16 ft 8 in (5.08 m)
Empty weight 13,600 lb (6,170 kg) 16,300 lb (7,390 kg) 18,900 lb (8,570 kg) 22,000 lb (9,980 kg)
Maximum take-off weight   37,500 lb (17,000 kg) 42,300 lb (19,200 kg) 46,000 lb (20,900 kg)
Maximum speed

Mach 2.0

Combat radius     295 nmi (546 km)  
Engine PW F100-PW-200 PW F100-PW-200 GE F110-GE-100 GE F110-GE-132
Thrust 23,800 lbf (106 kN) 23,800 lbf (106 kN) 28,600 lbf (127 kN) 32,500 lbf (145 kN)
Radar   AN/APG-66 AN/APG-68 AN/APG-80

Source: wiki

f16_3viewLockheed-F-16E-Block-60-Desert-Falcon

Advertisements

One thought on “F-16 E/F Block 60 Desert Falcon

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s