Eurofighter Typhoon

The Eurofighter Typhoon is a twin-engine, canard-delta wing, multirole fighter. The Typhoon was designed and is manufactured by a consortium of three companies; Alenia Aermacchi, Airbus Group and BAE Systems, who conduct the majority of affairs dealing with the project through a joint holding company, Eurofighter Jagdflugzeug GmbH, which was formed in 1986. The project is managed by the NATO Eurofighter and Tornado Management Agency, which also acts as the prime customer.

ct2hzfaxyaaguwj

Development of the aircraft effectively began in 1983 with the Future European Fighter Aircraft programme, a multinational collaborative effort between the UK, Germany, France, Italy and Spain. Because of disagreements over design authority and operational requirements, France left the consortium to develop the Dassault Rafale independently instead. A technology demonstration aircraft, the British Aerospace EAP, first took flight on 6 August 1986; the first prototype of the finalised Eurofighter made its first flight on 27 March 1994. The name of the aircraft, Typhoon, was formally adopted in September 1998; the first production contracts were signed that same year.

The Typhoon was introduced into operational service in 2003. Currently, the type has entered service with the Austrian Air Force, the Italian Air Force, the German Air Force, the Royal Air Force, the Spanish Air Force, and the Royal Saudi Air Force. The Royal Air Force of Oman has also been confirmed as an export customer, bringing the procurement total to 571 aircraft as of 2013.

Kuwait joins the Typhoon club: Here

Kuwait-Typhoon-1-706x398.jpgKuwait Typhoon – Image @theaviationist.com

UK to supply Qatar with Eurofighter jets in billion-dollar arms deal: Here

Excerpt

The British government and defence giant BAE Systems have agreed a major new deal to supply Qatar with Eurofighter Typhoon jets, despite fears of regional instability.

British Defence Secretary Michael Fallon signed a letter of intent with Qatar on Sunday that will see BAE Systems provide 24 Typhoon jets and support capabilities worth billions of dollars. 

Qatar signs $8bn Typhoon fighter jet deal with the UK: Here

Excerpt

Qatar will buy 24 Typhoon fighter jets worth $8bn from the United Kingdom as the Gulf state continues to stock up on high-tech weaponry. 

The deal between the two countries was signed in Doha by Qatar’s Defence Minister Khalid bin Mohammed al-Attiyah and his British counterpart, Gavin Williamson.

The Eurofighter Typhoon is a highly agile aircraft, designed to be a supremely effective dogfighter when in combat with other aircraft. Later production aircraft have been increasingly better equipped to undertake air-to-surface strike missions and to be compatible with a likewise increasing number of different armaments and equipment including Storm Shadow and the RAF’s Brimstone. The Typhoon saw its combat debut during the 2011 military intervention in Libya with the Royal Air Force and the Italian Air Force, performing aerial reconnaissance and ground strike missions. The type has also taken primary responsibility for air-defence duties for the majority of customer nations.

Eurofighter Typhoon25

The Typhoon is a highly agile aircraft at both supersonic and low speeds, achieved through having an intentionally relaxed stability design. It has a quadruplex digital fly-by-wire control system providing artificial stability, manual operation alone could not compensate for the inherent instability. The fly-by-wire system is described as “carefree”, and prevents the pilot from exceeding the permitted manoeuvre envelope. Roll control is primarily achieved by use of the wing flaperons. Pitch control is by operation of the foreplanes and flaperons, the yaw control is by rudder. 

ILA_2008_PD_312.JPG

Control surfaces are moved through two independent hydraulic systems, which also supply various other items, such as the canopy, brakes and undercarriage; powered by a 4,000 psi engine-driven gearbox. Engines are fed by a chin double intake ramp situated below a splitter plate.

Navigation is via both GPS and an inertial navigation system. The Typhoon can use Instrument Landing System (ILS) for landing in poor weather. The aircraft also features an enhanced ground proximity warning system (GPWS) based on the TERPROM Terrain Referenced Navigation (TRN) system used by the Panavia Tornado.The Multifunctional Information Distribution System (MIDS) provides a Link 16 data link.

The aircraft employs a sophisticated and highly integrated Defensive Aids Sub-System named Praetorian (formerly called EuroDASS). Praetorian monitors and responds automatically to air and surface threats, provides an all-round prioritised assessment, and can respond to multiple threats simultaneously. Threat detection methods include a Radar warning receiver (RWR), a Missile Warning System (MWS) and a laser warning receiver (LWR, only on UK Typhoons). Protective countermeasures consist of chaff, flares, an electronic countermeasures (ECM) suite and a towed radar decoy (TRD). The ESM-ECM and MWS consists of 16 AESA antenna array assemblies and 10 radomes.

AIR_Eurofighter_DASS_lg.jpgDefensive Aids Sub-System named Praetorian – Image @defenceindustrydaily.com

DASS (RWR)

General data:
Type: ESM Altitude Max: 0 m
Range Max: 222.2 km Altitude Min: 0 m
Range Min: 0 km Generation: Late 2000s
Sensors / EW:
DASS [RWR] – ESM
Role: RWR, Radar Warning Receiver
Max Range: 222.2 km
EF_DASS_01.jpgImage @bastion-karpenko.ru
General data:
Type: Infrared Altitude Max: 0 m
Range Max: 9.3 km Altitude Min: 0 m
Range Min: 0 km Generation: Late 2000s
Properties: Continous Tracking Capability [Visual]
Sensors / EW:
DASS [MAWS] – Infrared
Role: MAWS, Missile Approach Warning System
Max Range: 9.3 km
General data:
Type: ESM Altitude Max: 0 m
Range Max: 11.1 km Altitude Min: 0 m
Range Min: 0 km Generation: Late 2000s
Sensors / EW:
DASS [LWR] – ESM
Role: LWR, Laser Warning Receiver
Max Range: 11.1 km
The Typhoon features lightweight construction (82% composites consisting of 70% carbon fibre composite materials and 12% glass fibre reinforced composites) with an estimated lifespan of 6,000 flying hours. The permitted lifespan, as opposed to the estimated lifespan, was 3,000 hours.
Move cursor over each picture to see composite materials 

The Selex ES jammer known as BriteCloud is expected to provide an off-board capability to decoy radar guided missiles and fire-control radars, producing large miss distance and angle break lock. Such capability is provided by self-contained coherent technique generation processing and high-power batteries that allow at least ten seconds of life after firing activation, in addition to rapid response capabilities. Dispensed in the initial format from standard 55 mm flare cartridge, BriteCloud is to equip at least three main platforms – Eurofighter Typhoon, Saab Gripen and Panavia Tornado

Cockpit

D930LmfMHDDs and pedestal panel with centre stick in the Typhoon cockpit

The Typhoon features a glass cockpit without any conventional instruments. It incorporates three full colour multi-function head-down displays (MHDDs) (the formats on which are manipulated by means of softkeys, XY cursor, and voice (Direct Voice Input or DVI) command), a wide angle head-up display (HUD) with forward-looking infrared (FLIR), a voice and hands-on throttle and stick (Voice+HOTAS), a Helmet Mounted Symbology System (HMSS), a Multifunctional Information Distribution System (MIDS), a manual data-entry facility (MDEF) located on the left glareshield and a fully integrated aircraft warning system with a dedicated warnings panel (DWP). Reversionary flying instruments, lit by LEDs, are located under a hinged right glareshield. Access to the cockpit is normally via either a telescopic integral ladder or an external version. The integral ladder is stowed in the port side of the fuselage, below the cockpit.

Eurofighter pilot entering cockpit

User needs were given a high priority in the cockpit’s design; both layout and functionality was created through feedback and assessments from military pilots and a specialist testing facility. The aircraft is controlled by means of a centre stick (or control stick) and left hand throttles, designed on a Hand on Throttle and Stick (HOTAS) principle to lower pilot workloads. Emergency escape is provided by a Martin-Baker Mk.16A ejection seat, with the canopy being jettisoned by two rocket motors. The HMSS was delayed by years but should have been operational by late 2011.

Ejection SeatMartin-Baker Mk.16A ejection seatHELMET MOUNTED SYMBOLOGY SYSTEM (HMSS)

In the event of pilot disorientation, the Flight Control System allows for rapid and automatic recovery by the simple press of a button. On selection of this cockpit control the FCS takes full control of the engines and flying controls, and automatically stabilises the aircraft in a wings level, gentle climbing attitude at 300 knots, until the pilot is ready to retake control. The aircraft also has an Automatic Low-Speed Recovery system (ALSR) which prevents it from departing from controlled flight at very low speeds and high angle of attack.

The Typhoon Direct Voice Input (DVI) system uses a speech recognition module (SRM), developed by Smiths Aerospace (now GE Aviation Systems) and Computing Devices (now General Dynamics UK). It was the first production DVI system used in a military cockpit. DVI provides the pilot with an additional natural mode of command and control over approximately 26 non-critical cockpit functions, to reduce pilot workload, improve aircraft safety, and expand mission capabilities. All functions are also achievable by means of a conventional button-press or soft-key selections; functions include display management, communications, and management of various systems.

Sensors 

CAPTOR-E 

CAPTOR radar

The Eurofighter operates automatic Emission Controls (EMCON) to reduce the Electro-Magnetic emissions of the current CAPTOR mechanically scanned Radar. The Captor-M has three working channels, one intended for classification of jammer and for jamming suppression. A succession of radar software upgrades have enhanced the air-to-air capability of the Captor-M radar. These upgrades have included the R2P programme (initially UK only, and known as T2P when ‘ported’ to the Tranche 2 aircraft) which is being followed by R2Q/T2Q. R2P was applied to eight German Typhoons deployed on Red Flag Alaska in 2012.

RadarInfo2

RadarInfo1aesa 07

Source baesystems.com

Kuwait Confirmed as Launch Customer for Typhoon Captor-E (AESA) radar: Here

The CAPTOR-E is an Active electronically scanned array derivative of the original CAPTOR radar, also known as CAESAR (from CAPTOR Active Electronically Scanned Array Radar) being developed by the EuroRADAR Consortium, led by Selex ES. 

Synthetic Aperture Radar is expected to be fielded as part of the AESA radar upgrade which will give the Eurofighter an all-weather ground attack capability. The conversion to AESA will also give the Eurofighter a low probability of intercept radar with much better jam resistance. These include an innovative design with a gimbal to meet RAF requirements for a wider scan field than a fixed AESA. The coverage of a fixed AESA is limited to 120° in azimuth and elevation. A senior EADS radar expert has claimed that Captor-E is capable of detecting an F-35 from roughly 59 km away.

In May 2007, Eurofighter Development Aircraft 5 made the first flight with the CAPTOR-E demonstrator system, Tranche 2 aircraft use the non-AESA mechanically scanned Captor-M which incorporates weight and space provisions for possible upgrade to CAESAR (AESA) standard in the future. In June 2013, Chris Bushell of Selex ES warned that the failure of European nations to invest in an AESA radar was putting export orders at risk. In November BAE responded that work on an AESA radar continued, to protect exports. On 22 June 2011, it was announced that the partner nations had agreed to fund development of the Captor-E radar, with entry into service planned for 2015. The British are pursuing an independent Technology Demonstrator Programme called Bright Adder, which will give the Typhoon an Electronic Attack mode among other things. Bright Adder is based on Qinetiq’s ARTS radar demonstrator for the Tornado GR4 and could evolve into an alternative to the main E-Scan project should E-Scan falter.

On 19 November 2014 the contract to upgrade to the Captor-E was signed at the office’s of EuroRadar lead Selex ES in Edinburgh, in a deal worth €1bn. Availability of the radar, for Tranche 2 and 3A aircraft, was anticipated by 2016-17, however there are no orders for the radar system.

General data:
Type: Radar Altitude Max: 0 m
Range Max: 185.2 km Altitude Min: 0 m
Range Min: 0.4 km Generation: Early 2000s
Properties: Identification Friend or Foe (IFF) [Side Info], Non-Coperative Target Recognition (NCTR) – Jet Engine Modulation [Class Info], Continous Tracking Capability [Phased Array Radar], Track While Scan (TWS), Low Probability of Intercept (LPI), Pulse Doppler Radar (Full LDSD Capability)
Sensors / EW:
CAPTOR – (Typhoon, ECR 90, LPI) Radar
Role: Radar, FCR, Air-to-Air & Air-to-Surface, Medium-Range
Max Range: 185.2 km

Source cmano-db.com

Lockheed Martin’s Sniper® Advanced Targeting Pod Continues Platform Expansion with Eurofighter Typhoon: Here

Sniper XR targeting pod

Sniper-ATP.jpg

It is safe to say that the AN/AAQ-33 Sniper XR (manufactured by Lockheed Martin Corporation) is the most advanced targeting pod in service in the world today. Based on its predecessor, the LANTIRN targeting pod, it is far superior in range (3-5 times the range of LANTIRN), resolution, stability and in many other parameters. The first time in the history of targeting pods, it allows pilots to pick out even individual enemy soldiers on the ground from outside jet noise ranges. It is highly reliable, having anMTBF value (mean time between failures) of over 600 (!) hours. Its hardware and software configuration featuring “plug-and-play” flexibility across services and multiple platforms, Sniper XRcan be used on A-10, B-1, B-52, F-15E, F-16 and F-18 aircraft. Source f-15e.info

Details Emerge on UK’s Tornado-Typhoon Capability Transition with RAPTOR pod: Here

6db5e048-3138-4ddd-b03d-2544a57318f1-2060x1288

article-1218437-06b7f755000005dc-982_634x189

The Goodrich DB-110 is a compact, day/night, two-axis stabilized, real-time, tactical reconnaissance pod system suitable for installation aboard fighter aircraft such as the F-16 Fighting Falcon. This observation system has been designed for operations at medium and high altitude (10,000- to 80,000-ft) and low subsonic and supersonic speed (0.1 to 1.6 Mach) delivering high resolution infrared and visible bands imagery at extremely long ranges. Source deagel.com

Italian Typhoons demonstrate air-to-ground IFF capability

SIT 422/5 – IFF Interrogator Mode 5 and Mode S

The SIT422/5  is part of a family of MkXIIA (MkXII + Mode 5) and Mode S interrogators developed under the NGIFF program in order to provide a state-of-the-art IFF capability.
Military identification is available with Modes 4 and 5, suppor ted by an embedded crypto module entirely designed by Selex ES; and qualified by NATO Authorities (SECAN);
Variants of the equipment can be provided for non-NATO applications, with a M4-only or National Secure Mode capability. Mode S is also provided in order to monitor civilian air traffic for Situational Awareness purposes.  Source selex-comms.com

IRST

Sensor

The Passive Infra-Red Airborne Track Equipment (PIRATE) system is an infrared search and track (IRST) system mounted on the port side of the fuselage, forward of the windscreen. Selex ES is the lead contractor which, along with Thales Optronics (system technical authority) and Tecnobit of Spain, make up the EUROFIRST consortium responsible for the system’s design and development. Eurofighters starting with Tranche 1 block 5 have the PIRATE. The first Eurofighter Typhoon with PIRATE-IRST was delivered to the Italian Aeronautica Militare in August 2007. More advanced targeting capabilities can be provided with the addition of a targeting pod such as the LITENING pod.

Overview

PIRATE represents a major advance in avionics and gives Eurofighter Typhoon substantial tactical advantages in air intercept and air-ground operations. PIRATE operates in several modes including air-to-air and air-to-ground surveillance.It provides:

  • Very long range passive air-to-air capability.
  • Automatic detection and multiple target tracking, track while scan.
  • High angular resolution & track accuracy.
  • Large field of view in very large field of regard.
  • Identification of intercepted airborne targets
  • Thermal cues for prioritized ground targets
  • Steerable image on the pilot’s helmet-mounted display
  • Navigation and landing aid

Features

  • PIRATE detects and tracks the Infra-Red signatures of multiple aircraft at long range, over a wide field of view, day & night and adverse weather conditions. Being a passive sensor, it enables the aircraft to gather early intelligence of threats and to manoeuvre stealthily into an advantageous tactical position without being detected by hostile electronic warfare systems.
  • PIRATE accurately tracks multiple high-speed targets, prioritizes them and provides the on board Attack & Identification computer with target positional, velocity, acceleration, and approach/recede data. In addition it provides high-resolution images for visual identification. It provides highly reliable information for air-to-air and air-to-ground use. The system demonstrates a very high suppression rate of potential false alarms.
  • PIRATE is integrated with other on-board sensor systems for maximum sensor fusion effectiveness.
  • PIRATE locates and provides cueing information on ground targets. It provides data and imagery to head-up and multi-function head-down displays, facilitating navigation and terrain avoidance in adverse weather conditions.

Source thalesgroup.com

General data:
Type: Infrared Altitude Max: 0 m
Range Max: 185.2 km Altitude Min: 0 m
Range Min: 0 km Generation: Infrared, 3rd Generation Imaging (2000s/2010s, Impr LANTIRN, Litening II/III, ATFLIR)
Properties: Identification Friend or Foe (IFF) [Side Info], Classification [Class Info] / Brilliant Weapon [Automatic Target Aquisition], Continous Tracking Capability [Visual]
Sensors / EW:
PIRATE – Infrared
Role: IRST, Imaging Infrared Seach and Track
Max Range: 185.2 km

Source cmano-db.com

PIRATE is linked to the pilot’s helmet-mounted display

PIRATE operates in two IR bands, 3–5 and 8–11 micrometres. When used with the radar in an air-to-air role, it functions as an infrared search and track system, providing passive target detection and tracking. In an air-to-surface role, it performs target identification and acquisition. By supercooling the sensor even small variations in temperature can be detected at long range. Although no definitive ranges have been released an upper limit of 80 nm has been hinted at, a more typical figure would be 30 to 50 nm. It also provides a navigation and landing aid. PIRATE is linked to the pilot’s helmet-mounted display. It allows the detection of both the hot exhaust plumes of jet engines as well as surface heating caused by friction; processing techniques further enhances the output, giving a near-high resolution image of targets. The output can be directed to any of the Multi-function Head Down Displays, and can also be overlaid on both the Helmet Mounted Sight and Head Up Display.

The IIR sensor has a stabilised mount so that it can maintain a target within its field of view. Up to 200 targets can be simultaneously tracked using one of several different modes; Multiple Target Track (MTT), Single Target Track (STT), Single Target Track Ident (STTI), Sector Acquisition and Slaved Acquisition. In MTT mode the system will scan a designated volume space looking for potential targets. In STT mode PIRATE will provide high precision tracking of a single designated target. An addition to this mode, STT Ident allows for visual identification of the target, the resolution being superior to CAPTOR’s. Both Sector and Slave Acquisition demonstrate the level of sensor fusion present in the Typhoon. When in Sector Acquisition mode PIRATE will scan a volume of space under direction of another onboard sensor such as CAPTOR. In Slave Acquisition, off-board sensors are used with PIRATE being commanded by data obtained from an AWACS for example. When a target is found in either of these modes, PIRATE will automatically designate it and switch to STT.

Using the new helmet system, the pilot can now look at multiple targets, lock-on to them, and then, by voice-command, prioritise them.

  1. Radar in the nose of the Typhoon detects enemy aircraft hidden from his view in the airspace below.
  2. As the pilot looks down the position of the enemy aircraft is projected onto his visor. He can then lock-on to the aircraft by voice-command so it is tracked by the aircraft’s weapons systems.
  3. The pilot can also lock-on to enemy aircraft number 2 closing rapidly in over his right shoulder.
  4. He can then prioritise his targets by voice command before engaging his weapons.

Once a target has been tracked and identified PIRATE can be used to cue an appropriately equipped short range missile, i.e. a missile with a high off-boresight tracking capability such as ASRAAM. Additionally the data can be used to augment that of CAPTOR or off-board sensor information via the AIS. This should enable the Typhoon to overcome severe ECM environments and still engage its targets. Additionally PIRATE has a passive ranging capability although the system remains limited when it comes to provide passive firing solutions, as the PIRATE lacks laser rangefinder.

Attack and Identification System

Traditionally each sensor in an aircraft is treated as a discrete source of information; however this can result in conflicting data and limits the scope for the automation of systems, hence increasing pilot workload. To overcome this, the Typhoon employs what are now known as sensor fusion techniques (in a similar fashion to the U.S. F-22 Raptor).

EF-Sensorfusion

In the Typhoon fusion of all data sources is achieved through the Attack and Identification System, or AIS. The AIS combines data from the major on-board sensors along with any information obtained from off-board platforms such as AWACS, ASTOR, and Eurofighter own Multi-function Information Distribution System (MIDS). Additionally the AIS integrates all the other major offensive and defensive systems such as the DASS, Navigation, ACS and Communications.

In practice the AIS should allow the Eurofighter to identify targets at distances in excess of 150 nm and acquire and auto-prioritise them at over 100 nm. In addition the AIS offers the ability to automatically control emissions from the aircraft, so called EMCON (from EMissions CONtrol). This should aid in limiting the detectability of the Typhoon by opposing aircraft further reducing pilot workload.

Performance

The Typhoon’s combat performance, compared to the F-22 Raptor and the upcoming F-35 Lightning II fighters and the French Dassault Rafale, has been the subject of much discussion. In March 2005, United States Air Force Chief of Staff General John P. Jumper, then the only person to have flown both the Eurofighter Typhoon and the Raptor, talked to Air Force Print News about these two aircraft. He said,

The Eurofighter is both agile and sophisticated, but is still difficult to compare to the F/A-22 Raptor. They are different kinds of airplanes to start with; it’s like asking us to compare a NASCAR car with a Formula One car. They are both exciting in different ways, but they are designed for different levels of performance. …The Eurofighter is certainly, as far as smoothness of controls and the ability to pull (and sustain high g forces), very impressive. That is what it was designed to do, especially the version I flew, with the avionics, the color moving map displays, etc. – all absolutely top notch. The maneuverability of the airplane in close-in combat was also very impressive.

In July 2007, Indian Air Force Su-30MKI fighters participated in the Indra-Dhanush exercise with Royal Air Force’s Typhoon. This was the first time that the two jets had taken part in such an exercise. The IAF did not allow their pilots to use the MKI’s radar during the exercise to protect the highly classified N011M Bars. RAF Tornado pilots stated the Su-30MKI had superior manoeuvrability, but the IAF pilots were also impressed by the Typhoon’s agility. However, in one to one dogfights the Typhoon was found to be superior due to the fighter’s ‘next generation’ technology

cufhzhxwiaabmvt

Radar signature reduction features

Although not designated a stealth fighter, measures were taken to reduce the Typhoon’s radar cross section (RCS), especially from the frontal aspect. An example of these measures is that the Typhoon has jet inlets that conceal the front of the jet engine (a strong radar target) from radar. Many important potential radar targets, such as the wing, canard and fin leading edges, are highly swept, so will reflect radar energy well away from the front sector. Some external weapons are mounted semi-recessed into the aircraft, partially shielding these missiles from incoming radar waves. In addition radar-absorbent materials (RAM), developed primarily by EADS/DASA, coat many of the most significant reflectors, such as the wing leading edges, the intake edges and interior, the rudder surrounds, and strakes.

Armament

The Typhoon is a multi-role fighter with maturing air-to-ground capabilities. The initial absence of air-to-ground capability is believed to have been a factor in the type’s rejection from Singapore’s fighter competition in 2005. At the time it was claimed that Singapore was concerned about the delivery timescale and the ability of the Eurofighter partner nations to fund the required capability packages.Tranche 1 aircraft could drop laser-guided bombs in conjunction with third-party designators but the anticipated deployment of Typhoon to Afghanistan meant that the UK required self-contained bombing capabilities before the other partners. On 20 July 2006, a £73m deal was signed for Change Proposal 193 (CP193) to give an “austere” air-to-surface capability using GBU-16 Paveway II and Rafael/Ultra Electronics Litening III laser designator for the RAF Tranche 1 Block 5 aircraft.Aircraft with this upgrade were designated Typhoon FGR4 by the RAF.

Similar capability will be added to Tranche 2 aircraft on the main development pathway as part of the Phase 1 Enhancements. P1Ea (SRP10) will enter service in 2013 Q1 and adds the use of Paveway IV, EGBU16 and the cannon against surface targets. P1Eb (SRP12) adds full integration with GPS bombs such as GBU-10 Paveway II, GBU-16 Paveway II, Paveway IV and a new realtime operating system that allows multiple targets to be attacked in a single run. This new system will form the basis for future weapons integration by individual countries under the Phase 2 Enhancements. A definite schedule has not yet been agreed, but will likely see the Storm Shadow and KEPD 350 (Taurus) cruise missiles integrated in 2015, followed by Brimstone anti-tank missiles. An anti-shipping capability is required by 2017, and such a capability is also important for potential export customers such as India; Eurofighter is studying integrating the Boeing Harpoon or MBDA Marte or Sea Brimstone missiles onto the Typhoon for a maritime attack capability.The Typhoon can accommodate two RBS-15 or three Marte-ERP under each wing but neither has been integrated yet.

Typhoon weapons testing on target for UK: Here

Eurofighter Typhoon Development schedule

U.K. Typhoon enhancements enter operational evaluation phase: Here

Eurofighter Typhoon has completed the successful test-firing of two Meteor missiles: Here

Meteor – Beyond Visual Range Air-to-Air Missile (BVRAAM)

Meteor is a next generation, active radar-guided, beyond visual range air-to-air missile (BVRAAM) system. The missile is being developed by MBDA Systems for six European nations.

The Meteor BVRAAM can be integrated on Eurofighter Typhoon, Saab Gripen and Dassault Rafale aircraft. The Meteor missile can also be installed on Lockheed Martin’s F-35 Lightning II Joint Strike Fighter (JSF).

The missile, being designed as a complete unit, requires no assembly and maintenance immediately before loading. This arrangement reduces its overall life logistic support cost.

Meteor can be launched as a stealth missile. It is equipped with enhanced kinematics features. It is capable of striking different types of targets simultaneously in almost any weather.

The Meteor has a length of 3.65m and diameter of 0.178m. It is designed to be compatible with AIM-120 type rail and eject launcher systems.

The Meteor missile is equipped with a blast-fragmentation warhead, supplied by TDW of Germany. The warhead is designed as a structural component of the missile. The missile integrates proximity and impact fuses.

The Meteor is equipped with a two way datalink, which allows the launch platform to provide updates on targets or re-targeting when the missile is in flight. The datalink is capable of transmitting information such as kinematic status. It also notifies target acquisition by the seeker.

The Meteor is installed with an active radar target seeker, offering high reliability in detection, tracking and classification of targets. The missile also integrates inertial measurement system (IMS) supplied by Litef.

The missile has a range in excess of 100km. It is designed for a speed greater than Mach 4. The missile has a large no escape zone.

The Meteor missile is powered by a solid fuel variable flow ducted rocket (ramjet) supplied by Bayern-Chemie. The ramjet provides the Meteor missile with a capability to maintain consistent high speeds. This ability helps the missile to chase and destroy fast moving flexible targets.

The Meteor includes an electronics and propulsion control unit (EPCU). The EPCU adjusts the rocket’s air intake and duct covers based on the cruise speed and the target’s altitude.

The EPCU observes the distance and fuel level in the rocket and adjusts the throttle of the rocket. This feature of the EPCU helps the missile to manage its fuel system. Source airforce-technology.com

Eurofighter Typhoon to begin Brimstone firing trials: Here

Brimstone

Brimstone provides a combat proven, low collateral, close air support weapon offering to the fast jet operator the unique capability of engaging a wide range of target types, including fast moving vehicles / vessels in both land and naval environments and in both direct and indirect modes.

The latest generation Brimstone builds upon the successful Brimstone Urgent Operational Requirement (UOR) which deployed the weapon into front line operations with the RAF.

Operationally deployed in the Afghanistan,Libya conflicts, Brimstone has proved to be the weapon of choice with its ability to perform surgical strikes in time critical missions with a true day / night capability.

Brimstone is fully integrated onto Tornado GR4 and is intended for integration on Typhoon and Future Attack Helicopter. The weapon system is also suitable for deployment on a wide range of Unmanned Aerial Vehicles, land and surface platforms.

Combat aircraft armed with the Brimstone weapon offer reach, speed, flexibility, precision and the ability to engage multiple targets with a single mission load. When used from a fixed wing platform, Brimstone provides a rapid response for Close Air Support and Counter Insurgency that is not possible from helicopters alone.

Brimstones’s wide range of target types includes:

  • fast moving and manoeuvring vehicles,
  • tanks and armoured cars, bunkers,
  • naval vessels including swarming and individual Fast In-shore Attack Craft (FIAC).

Source mbda-systems.com

Brimstone Flight Profile

Eurofighter Typhoon enhanced capability programme- successful Brimstone missile trials completed: Here

Excerpt

A series of live firings of the Brimstone precision strike missile from a Eurofighter Typhoon have been completed successfully.

The trials, conducted from BAE Systems’ Military Air & Information at Warton, Lancashire, UK, form part of a programme of new enhancements which will be rolled out across the Royal Air Force.

Spear missile fired from Eurofighter Typhoon airplane: Here

MBDA SPEAR 3 missile

According to MBDA, recent conflicts have demonstrated the need for precision strike weapons that can operate night and day in all weather conditions against severe countermeasures and importantly attack moving and manoeuvering targets. Powered by a turbojet engine, SPEAR has the beyond horizon reach to ensure that the aircraft remains safely away from hostile air defence units.

SPEAR is equipped with the latest generation precision effects warhead, designed to meet the demands of the future combat mission. This next generation air launched Surface Attack Weapon reduces the numbers of different weapons within inventory while also extending the operator’s ability to engage mobile, fleeting and re-locatable targets far beyond the horizon.

Spear launcherSPEAR Capability 3 @Think Defence

Fitted with the latest generation multi sensor seeker designed to operate in all combat conditions and to be able to engage a wide range of target types both on land and sea. SPEAR is effective against:
• Naval vessels
• Air Defence Units
• Defended structures
• Ballistic Missile launchers
• Fast moving and manoeuvering vehicles
• Main Battle Tanks, Self-Propelled Guns, Armoured Personnel Carriers

SPEAR 3 is a powered weapon, while the American-made Small Diameter Bomb II only glides. SPEAR 3 has two small side intakes for its Hamilton Sundstrand TJ-150 turbojet, and the engine opens up a whole range of unique capabilities for a weapon so small.

TJ-150-TurbojetSPEAR Capability 3 Hamilton Sundstrand TJ-150 turbojet @Think Defence

This 80 kg mini-cruise missile can be launched even when not facing the target (differently from SDB) and with more freedom regardless of launch height and weather conditions that affect gliding. The weapon is to be able to engage fixed and mobile targets alike, with a data link enabling post-launch control and retargeting.

ORD_GBU-53_Cutaway_lg

The propulsion is also fundamental in order to achieve the range of at least 100 km that the British MOD wants. SDB is a 45 nautical miles glide weapon, while the UK MOD and MBDA believe they can achieve north of 62 nautical miles for SPEAR.

Source navyrecognition.com

BAE Systems – Eurofighter Typhoon P3E Weapons & Radar Enhancements:

Typhoon FGR4

The Typhoon FGR4 provides the RAF with a highly capable and extremely agile multi-role combat aircraft, capable of being deployed in the full spectrum of air operations, including air policing, peace support and high intensity conflict.

Specifications

  • Engines: 2 Eurojet EJ200 turbojets
  • Thrust: 20,000lbs each
  • Max speed: 1.8Mach
  • Length: 15.96m
  • Max altitude: 55,000ft
  • Span: 11.09m
  • Aircrew: 1
  • Armament: Paveway IV, AMRAAM, ASRAAM, Mauser 27mm Cannon, Enhanced Paveway II

Initially deployed in the air-to-air role as the Typhoon F2, the aircraft now has a potent and precise multirole capability.

The pilot can carry out many functions by voice command or through a hands-on stick and throttle system. Combined with an advanced cockpit and the HEA (Helmet equipment assembly) the pilot is superbly equipped for all aspects of air operations.

Britain, Germany, Italy and Spain formally agreed to start development of the aircraft in 1988 with contracts for a first batch of 148 aircraft – of which 53 were for the RAF – signed ten years later. Deliveries to the RAF started in 2003 to 17(R) Sqn who were based at BAE Systems Warton Aerodrome in Lancashire (alongside the factory where the aircraft were assembled) while detailed development and testing of the aircraft was carried out. Formal activation of the first Typhoon Squadron at RAF Coningsby occurred on the 1st Jul 2005. The aircraft took over responsibility for UK QRA on 29 Jun 2007 and was formally declared as an advanced Air Defence platform on 1 Jan 2008.

Initial production aircraft of the F2 Tranche 1 standard were capable of air-to-air roles only and were the first Typhoons to hold UK QRA duties. In order to fulfill a potential requirement for Typhoon to deploy to Op HERRICK, urgent single-nation work was conducted on Tranche 1 to develop an air-to-ground capability in 2008. Tranche 1 aircraft were declared as multi-role in Jul 2008, gaining the designation FGR4 (T3 2-seat variant), fielding the Litening Laser Designator Pod and Paveway 2Enhanced Paveway 2 and 1000lb freefall class of weapons.

All F2/T1 aircraft have been upgraded to FGR4/T3.

Tranche 2 aircraft deliveries commenced under the 4-nation contract in 2008, in the air-to-air role only. These aircraft were deployed to the Falkland Islands to take-over duties from the Tornado F3 in Sep 09.

A total of 53 Tranche 1 aircraft were delivered, with Tranche 2 contract provisioning for 91 aircraft. 24 of these were diverted to fulfill the RSAF export campaign, leaving 67 Tranche 2 aircraft due for delivery to the RAF. The Tranche 3 contract has been signed and will deliver 40 aircraft. With the Tranche 1 aircraft fleet due to retire over the period 2015-18, this will leave 107 Typhoon aircraft in RAF service until 2030.

Weapons integration will include Meteor air-to-air missilePaveway IVStorm ShadowBrimstone and Small Diameter Bomb. Additionally, it is intended to upgrade the radar to an Active Electronically Scanned Array.

 

Eurofighter is easily recognisable from any angle. The engine intake is mounted on the bottom of the fuselage (1). Typhoon also has canards (foreplanes) mounted before the main wing (2) and delta (triangular) mainplane (3) is very deep at the point it joins the main fuselage. A tall, sharply swept tail (4) is at the rear of the upper fuselage, with the twin engine jet pipes directly below. The two-seat version has a large bubble cockpit for the additional pilot and a deeper upper fuselage giving a more humped appearance. Source raf.mod.uk

GBU-10 Paveway II

GBU-10 Paveway II

GBU-16 Paveway II

gbu16GBU-16 Paveway II

Paveway IV

Paveway-IV-imagePaveway IV

MBDA Storm Shadow cruise missile

 

Originated From:France, United Kingdom
Alternate Name:Black Shahine
Class:Subsonic
Basing:Air-to-surface
Length:5.1 m
Launch Weight:1,300 kg
Payload:400 kg
Warhead:Tandem HE (BROACH)
Propulsion:Turbojet
Range:250-400 km
In Service:2004
In 1991, Matra (later Matra BAe Dynamics, MBDA) proposed a long-range, stand-off variant based on the APACHE design which would have a designated range of 600 km. This variant was originally known as APACHE C, later renamed to APTGD (Armement de Precision Tire á Grande Distance), and was finally deemed the SCALP (Systéme de Croisiére conventional Autonone á Longue Portée de precision). France adopted the SCALP EG (general purpose) variant in 1994. The SCALP EG, which is nearly identical to the Storm Shadow/Black Shaheen, went on to be the basis for the SCALP Naval version.
Eurofighter Typhoon flies with Storm Shadow air-launched Cruise Missiles @theaviationist.com

Due to its relation to the APACHE system, the specifications reflect many similarities. The SCALP EG/Storm Shadow is 5.1 m in length, 0.63/ 0.48 m in body width/height diameter, and 1,300 kg in launch weight. The payload is slightly less than the APACHE at 400 kg. The notable distinction between the APACHE and the SCALP/Storm Shadow missiles are the warhead types and the effective range. The SCALP carries a single HE penetrator warhead, making it a far more versatile system than the submunitions carried by the APACHE. Additionally, the range for the SCALP/Storm Shadow is 250 to 400 km — significantly further than the APACHE’s 140 km.

Storm Shadow Cutaway with Annnotations MBDA UK Limited © Copyright 2011SCALP EG/Storm Shadow cruise missile.

Data missilethreat.com

Taurus KEPD 350

taurus-png

Taurus KEPD 350 is a German/Swedish air-launched cruise missile, manufactured by Taurus Systems

Boeing Harpoon anti-ship missile

Boeing Harpoon anti-ship missile

MBDA Marte  anti-ship missile

MBDA Marte  anti-ship missile

Sea Brimstone missiles

Sea Brimstone missiles

RBS-15

RBS-15 (Robot system 15) is a long-range fire-and-forget surface-to-surface and air-to-surface, anti-ship missile.

Variants

The Eurofighter is produced in single-seat and twin-seat variants. The twin-seat variant is not used operationally, but only for training. The aircraft has been manufactured in three major standards; seven Development Aircraft (DA), seven production standard Instrumented Production Aircraft (IPA) for further system development and a continuing number of Series Production Aircraft. The production aircraft are now operational with the partner nation’s air forces.

The Tranche 1 aircraft were produced from 2000 onwards. Aircraft capabilities are being increased incrementally, with each software upgrade resulting in a different standard, known as blocks. With the introduction of the block 5 standard, the R2 retrofit programme began to bring all Tranche 1 aircraft to that standard.

Operators: Here

Specifications

Eurofighter Typhoon line drawing.svg

Data from RAF Typhoon data, Air Forces Monthly, Superfighters, and Brassey’s Modern Fighters

General characteristics

  • Crew: 1 (operational aircraft) or 2 (training aircraft)
  • Length: 15.96 m (52.4 ft)
  • Wingspan: 10.95 m (35.9 ft)
  • Height: 5.28 m (17.3 ft)
  • Wing area: 51.2 m² (551 sq ft)
  • Empty weight: 11,000 kg (24,250 lb)
  • Loaded weight: 16,000 kg (35,270 lb)
  • Max. takeoff weight: 23,500 kg (51,800 lb)
  • Powerplant: 2 × Eurojet EJ200 afterburning turbofan
    • Dry thrust: 60 kN (13,490 lbf) each
    • Thrust with afterburner: >90 kN (20,230 lbf) each
  • Fuel capacity: 5,000 kg (11,020 lb) internal

Eurojet EJ200 afterburning turbofan

2 × Eurojet EJ200 afterburning turbofan

EuroJet EJ200 Specifications:

  • Type: Turbofan
  • Length: 157 inches (4.0 m)
  • Diameter: 29 inches (0.737 m)
  • Dry weight: 2,180 lbs (989 kg)
  • Compressor: 3-stage LP, 5-stage HP
  • Combustors: annular
  • Turbine: 1-stage LP, 1-stage HP
  • Maximum thrust: 13,500 lbf (60 kN) dry thrust / 20,000 lbf (89 kN) with reheat
  • Bypass ratio: 0.4:1
  • Overall pressure ratio: 26:1
  • Turbine inlet temperature: 1,800K
  • Specific fuel consumption: 21–23 g/kNs dry thrust / 47–49 g/kNs with reheat Thrust-to-weight ratio: 9.175:1 (with reheat)

Source: airpowerworld.info

Performance

  • Maximum speed:
    • At altitude: Mach 2 class(2,495 km/h or 1,550 mph)
    • At sea level: Mach 1.25 (1,470 km/h or 910 mph)
    • Supercruise: Mach 1.5
  • Range: 2,900 km (1,800 mi)
  • Combat radius:
    (with 3 external 1,000 l tanks)
  • Ground attack, lo-lo-lo: 601 km (325 nmi)
  • Ground attack, hi-lo-hi: 1,389 km (750 nmi)
  • Air defence with 3-hr combat air patrol: 185 km (100 nmi)
  • Air defence with 10-min. loiter: 1,389 km (750 nmi) 
  • Ferry range: >3,790 km (2,350 mi with 3 drop tanks)
  • Service ceiling: 19,812 m (65,000 ft)
  • Rate of climb: >315 m/s (62,000 ft/min)
  • Wing loading: 312 kg/m²(63.9 lb/ft²)
  • Thrust/weight: 1.15 (interceptor configuration)
  • Maximum g-load: +9/−3 g
  • Brakes-off to Take-off acceleration:
  • Brakes-off to supersonic acceleration:
  • Brakes-off to Mach 1.6 at 11,000 m (36,000 ft):

Armament

Avionics

eurofighter-2020

Source: baesystems.com/eurofighter.com/wikipedia.org/storify.com/from the net

Updated on Jan 24, 2108

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.