C-130J Hercules Tactical Transport Aircraft

The Lockheed Martin C-130 is the US Air Force principal tactical cargo and personnel transport aircraft. The C-130J Hercules is the latest model, featuring a glass cockpit, digital avionics and a new propulsion system with a six-bladed propeller.

The C-130 has been in continuous production since 1954 and more than 2,500 Hercules were built for 63 countries.

C-130J transport aircraft upgrade

The improvements built into the C-130J, which entered production in 1997, have enhanced the performance of the aircraft in terms of its range, cruise ceiling time to climb, speed and airfield requirements.

c130jImage @theaviationzone.com

The new C-130J Hercules II incorporates state-of-the-art technology to reduce manpower requirements by 38 percent, lower operating and support costs by 35 percent, and provide life cycle cost savings of 15 percent over earlier C-130 models. The C-130J also climbs faster and higher — 14 minutes to 28,000 feet (8,534m); flies farther at a higher cruise speed — 2,430 nm (4,500km) at 450 mph (724km/h); and can takeoff and land in a shorter distance — 1,950 feet (594m). Source @theaviationzone.com

A stretched version, the C-130J-30 has been developed and designated the CC-130J by the USAF. The first C-130J-30 for the UK RAF (the launch customer) was delivered in November 1999.

C-130J-30 of the RAF


The C-130J entered active service with the USAF at Little Rock Air Force Base in April 2004 and was first deployed in December 2004.

The first of five C-130J Super Hercules aircraft intended for deployment at Little Rock left Lockheed Martin’s facility, for delivery to the base, in August 2013.

The first combat airdrop for the USAF was in July 2005. The US Air Mobility Command declared initial operating capability for the C-130J in October 2006.

The US Air Force awarded a $167m block upgrade contract to Lockheed Martin in December 2011 to overhaul the C-130J Hercules with Block 8.1 configuration.

Lockheed Martin chooses AVIATOR 700D SATCOM avionics for block 8.1 upgrade to C-130J military turboprop aircraft


The C-130J avionics upgrade will use the AVIATOR 700D SwiftBroadband and classic aero service satellite communications system from Thrane & Thrane that can be tailored to any airframe, company officials say. The deal is worth $24.8 million.

The AVIATOR 700D is a compact SATCOM design that combines high gain antenna (HGA) that offers voice dialling from the cockpit multifunction control display units, with Level D software and hardware.

The system complies to the Future Air Navigation System (FANS) 1/A, controller pilot data link communications (CPDLC), and voice safety service operations via the system’s cockpit data and voice channels.

The AVIATOR 700D provides access to six separate channels for voice and data service, simultaneous voice calling, and secure data transfer. The system will enable C-130J crews to make voice calls, send e-mail, browse the internet, and stream video with several different users simultaneously.

The SATCOM system also has built-in wireless capability to create an aircraft Wi-Fi hotspot for in-flight use of smart phones, personal tablets, and laptop computers. Crew members can access video conferencing and seamless VPN access over Wi-Fi.

The Lockheed Martin block 8.1 upgrade involves more than 200 aircraft that will be rolled out between 2014 to 2018. The SATCOM system will support the air traffic management data link component of the Block 8.1 upgrade. Source @militaryaerospace.com

The Block 8.1 configuration contains software and hardware capability expansion such as modernised identification friend or foe (IFF), automatic dependent surveillance broadcast, communication, navigation and air traffic management datalink.

C-130J Block 9.0

Scheduled for FY09, includes full Civil Required Navigation Compliance (RNP), Joint Tactical Radio System and Advanced Situation Awareness and Countermeasure System Phase II. Customer options include AN/ALR-56M RWR, AN/AAR-47 MWS, AN/ALE-47 CMDS and AN/AAQ-22 Star Safire FLIR system. Source @scramble.nl

Cockpit of the C-130J Hercules transport aircraft

c130j-cockpit_lC-130J cockpit @sps-aviation.com19915526663_dba9832fe0_cImage @fightercontrol.co.uk

The C-130J is crewed by two pilots and a loadmaster. The new glass cockpit features four L-3 display systems multifunction liquid crystal displays for flight control and navigation systems.

Each pilot has a Flight Dynamics head-up display (HUD). The dual mission computers, supplied by BAE Systems IEWS, operate and monitor the aircraft systems and advise the crew of status.

0904385Lockheed Martin C-130J Hercules (L-382) – Italy – Air Force | Aviation Photo #0904385 | Airliners @airliners.netc130-3

The HUD and the navigation mode can project flight parameters related to the navigation, such as checkpoints, time them and even indicate whether there is a deviation from the course that can be verified in a cartographic presenter with a digital map. This facilitates tactical navigation, especially at low altitude and maintains permanently the view of both crew out of the instrument panel to increase external monitoring. Source @taringa.net


The C-130J pilots for tactical flight at low altitude have several aid to improve the safety of the operation, particularly the TAWS system (terrain awareness warning system) or warning system and “conscience” of the land that is in similar to the proximity indicators of land (EGPWS) equipment but including a database of terrain and obstacles around the world, allowing for safe navigation and unobtrusive when not to use the radar. The data are projected onto the flight path and intensity of the color indicates different levels of terrain altitude as flight altitude of C-130J. Source @taringa.net

The cockpit is fitted with the Northrop Grumman low-power colour radar display. The map display shows digitally stored map image data.

c130jc_zps7416a94dImage @captainsim.org


7592952094_6132bc1121 c130j-3c130j-2

The C-130J is equipped with a Honeywell dual embedded global positioning system / inertial navigation system (GPS/INS), an enhanced traffic alerting and collision avoidance system (E-TCAS), a ground collision avoidance system, SKE2000 station keeping system, and an instrument landing system (ILS).

AN/APN-243 Stationkeeping Equipment 2000 (SKE-2000)


Allow up to 36 aircraft on 4 different frequency channels to fly instrumented formation in zero visibility.

With the help of the AN/APN-243, aircraft can operate within a 10 nm radius of a selected participating master system on the same frequency, allowing for close contact between aircraft. The system is also designed for easy, accessible upgrade, with reduced weight, size and cost.

The AN/APN-243 upgrades earlier versions of SKE or fully integrates with new or existing mission computers and flight management systems, maintaining complete interoperability with more than 800 installed systems of Air Forces worldwide. Source @drs.com



Weight 24 lbs. (10.9 kg)

Dimensions 7.0 H x 11.9 W x 15.0 D inches (17.8 H x 30.2 W x 38.1 cm)

Power 24 VDC @ 4 amps

Cooling Natural convection

Mounting Sheet metal tray, no isolators



Weight 8.6 lbs. (3.9 kg)

Dimensions 6.9 H x 5.6 W x 10.8 D inches (17.5 H x 14.2 W x 27.4 D cm)

Power From the CM input power +140 VDC +/- 5% @ 1/3 amp

Cooling Natural convection

Mounting Sheet metal mount, no isolators

Source @drsdev.azurewebsites.net

In July 2008, Lockheed Martin announced the following would be included in the baseline configuration of new C-130Js: Elbit Systems global digital map unit and the TacView portable mission display and InegrFlight commercial GPS landing system sensor unit, supplied by CMC of Canada.

Elbit Systems global digital map unit


Source @yumpu.com

TacView portable mission display

c-130j-super-hercules-inside-the-1280x768Image @aiirsource.com

The TacView® Portable Mission Display (PMD) is a compact, self-contained mission computer designed specifically to enhance situational awareness for military, paramilitary, law enforcement, and civil aircrews. TacView provides mission enhancing functionality at the flight crew’s fingertips, with a data interface no other airborne portable computer can provide.


TacView® PMD Applications

Situational awareness only happens with the right tools. TacView® is the portable mission tool that links the crew to the networked battlefield and facilitates mission planning in a paperless cockpit.


Application Flexibility

The TacView® PMD software environment is supported by a Windows 7 operating system. This allows greater application flexibility and empowers the air crew to select applications best suited to their conditions. Types of applications supported on TacView® include:

  • Mission planning and on-the-fly mission re-planning 
    Portable Flight Planning Software (PFPS)

    • FalconView® mapping system
    • Combat Flight Planning Software (CFPS)
    • Combat Weapon Delivery Software (CWDS)
    • Combat Air Drop Planning Software (CAPS)
  • Link16 Tactical Datalink display and management
    • 9-line/15-line text messages
    • Target imagery data
    • Two channels of digital voice
    • Live feed video
  • Blue Force tracking
  • Situation Awareness Data Link
  • Radar / Targeting Pod Video Display
  • Smart Display Repeater
  • Paperless Cockpit Applications
  • Linked Electronic Checklists
  • Real-Time weather mapping

Additional applications are available that enable note-taking, image sharing, post-flight maintenance debrief, mission rehearsal/review, charting and embedded training.

When coupled with optical or infrared video sources such as CMC’s SureSight® I-Series™ Enhanced Vision System (EVS), the combined TacView/EVS system improves flight crew situational awareness by helping them see through fog, haze, precipitation and at night for increased mission effectiveness.

Source @esterline.com

Cargo systems


The cargo bay of the C-130J has a total usable volume of more than 4,500ft³ and can accommodate loads up to 37,216lb. For example, three armoured personnel carriers, five pallets, 74 litters (stretchers), 92 equipped combat troops or 64 paratroops. The bay is equipped with cargo handling rollers, tie-down rings, stowage containers and stowage for troop seats.


air_c130j-30_australian_flares_lgImage @defenceindustrydaily.com

The ATK AN/AAR-47 missile warning system uses electro-optic sensors to detect missile exhaust and advanced signal processing algorithms and spectral selection to analyse and prioritise threats. Sensors are mounted near the nose just below the second cockpit window and in the tail cone.

ATK AN/AAR-47 missile warning system

images (1)

The AN/AAR-47 Missile Warning System is a Missile Approach Warning system used on slow moving aircraft such as helicopters and military transport aircraft to notify the pilot of threats and to trigger the aircraft’s countermeasures systems. Its main users are the U.S Army, Navy and Air Force, but is also operated by other countries. Originally developed by Loral (now part of BAE Systems), it has been solely a product of Alliant Techsystems (ATK) since 2002.


Method of Operation

The AN/AAR-47 passively detects missiles by their Ultraviolet signature, and uses algorithms to differentiate between incoming missiles and false alarms. Newer versions also have laser warning sensors and are capable of detecting a wider range of threats. After processing the nature of the threat, the system gives the pilot an audio and visual warning, and indicates the direction of the incoming threat. It also sends a signal to the aircraft’s infrared countermeasures system, which can then for example deploy flares.


The AAR-47 missile warning system consists of 4 Optical Sensor Converters (OSC), a Computer Processor and a Control Indicator. The system is relatively light at a total weight of approximately 32 pounds.

There is one optical sensor converter for each side of the aircraft. They have an infrared camera for detecting incoming missiles. The Optical modules since version AAR-47(V)2 include a laser warning sensor, and versions since AAR-47A(V)2 further incorporate an ultraviolet sensor for improved dynamic blanking laser warning detection.

The computer processor evaluates the data from the OSC:s and analyzes whether a detected event is an incoming missile. If a threat is detected, it sends a signal to the control indicator which informs the crew, and the aircraft’s infrared countermeasures system.

Source @revolvy.com

The BAE Systems AN/ALR-56M radar warning receiver is a superheterodyne receiver operating in the 2GHz to 20GHz bands. A low-band antenna and four high-band quadrant antennae are installed near the nose section below the second window of the cockpit and in the tail cone.

BAE Systems AN/ALR-56M radar warning receiver



Advanced Radar Warning Receiver System

 – U.S. Air Force standard advanced RWR

 – Unambiguous threat detection/ identification

– Advanced architecture for high-density environment

– C-J band coverage — growth to MMW and other bands

 – Designed for easy RF compatibility/ interoperability with a wide range of aircraft and EW avionics

– User/flightline reprogrammable

– Demonstrated high operational MTBF and low MTTR

 – Two-level maintenance assures low lifecycle cost

 – Over 1000 systems; baseline equipment on F-16, B-1B, C-130J and UK RMPA aircraft

System features

– Modern RISC -computer controlled, wideband, agile, superheterodyne receiver architecture

– Automatically adapts selectivity and sensitivity to the threat environment

– Reliable detection and digital preprocessing eliminates non-threat RF signals

 – Adaptive high-speed digital signal processing

– Adaptive real-time filtering provides protection against high-rate emitters and CW signals

– Continuous built-in test and calibration with in-cockpit reporting

– Capability growth (e.g., dual pole, mmW, precision location, identification)

 – Detects and identifies all modern search, acquisition and tracking radars of groundbased and aircraft weapons systems

Source @baesystems.com

The BAE Systems Integrated Defence Solutions (formerly Tracor) AN/ALE-47 countermeasures system is capable of dispensing chaff and infra-red flares in addition to the POET and GEN-X active expendable decoys.

AN/ALE-47 countermeasures system

AN/ALE-47 dispenser and associated equipment

In response to automated warnings of radar, infrared, laser and other threats against aircraft, the AN/ALE-47 Countermeasures Dispenser System (CMDS) both assists the crew in staying aware of the threats, and managing the deployment of electronic warfare devices that operate externally to the vehicle. “Electronic”, in this context, covers enemy sensors across the electromagnetic spectrum. Electronic defense includes, as well as receivers and computers that detect and analyze threats, both countermeasures that are part of the aircraft, but also expendables that are released from it.

In other words, it both acts as an electronics countermeasures suite controller and as an electronic warfare expendables dispenser. It replaces the AN/ALE-39. Alternatively, it can be controlled by other control systems, such as the AN/ALQ-213

Source @citizendium.org

The Lockheed Martin AN/ALQ-157 infra-red countermeasures system generates a varying frequency-agile infrared jamming signal. The infrared transmitter is surface mounted at the aft end of the main undercarriage bay fairing.

96935Photo taken on 2010-7-21 by Steve Morris – Image @airplane-pictures.net

AN/ALQ-157 infra-red countermeasures system1434573468722

The AN/ALQ-157 Infrared Countermeasures (IRCM) system offers continuous, multi-threat jamming for helicopter and fixed-wing aircraft protection.

usmc_kc-130jqd-7982_alq-157_infrared_countermeasures_ircm_system_in_iwakuni_air_base_20140914AN/ALQ-157 IRCM System – Image @kilopops.livejournal.com

The AN/ALQ-157 IRCM System protects large, heavy-lift helicopters and medium-sized, fixed-wing aircraft from Band I, II infrared threats, including first-generation surface-to-air and air-to-air missiles. It can defeat multiple threats simultaneously and employ “jam-in-tube” capability for certain threats. With continuous active jamming and extreme adaptability features, the AN/ALQ-157 system provides constant protection.


  • Modular design
  • Reduced down time
  • Advanced reliability
  • Operator jamming code selection

Source @baesystems.com

The USAF has selected the Northrop Grumman Large Aircraft Infra-red Countermeasures (LAIRCM) system to equip its C-130 aircraft. LAIRCM is based on the AN/AAQ-24(V) NEMESIS.

LAIRCM is based on the AN/AAQ-24(V) NEMESIS


The AN/AAQ-24(V) Directional Infrared Countermeasure (DIRCM) system is the only DIRCM system in production today that will protect aircraft from today’s infrared guided missiles.


Traditional IR countermeasures are not effective against the modern IR missiles that are growing in popularity among terrorist groups and in thirdworld countries. A Directional Infrared Countermeasures (DIRCM) system is required to defeat the latest and future advanced IR threats, and has a lower life cycle cost compared to other IR countermeasure approaches.

  • Simultaneously tracks and defeats threats in clutter environments
  • Fast, accurate threat detection and simultaneous jamming in all current IR threat Bands (I, II and IV)
  • Counters all fielded IR missile threats using a single generic jam waveform
  • Complete end-to-end self-testing features reduce life-cycle maintenance
  • Compatible with existing support facilities

Customized installation

The AAQ-24(V) is available in a laser-based configuration. Northrop Grumman then selects from a modular family of transmitters, jammers and missile warning systems to provide a customized installation best able to meet your specific platform, mission and budget requirements. Upgrades to existing systems are easy to install without further airframe modifications.

Source @northropgrumman.com

c130-8Image @taringa.net

It entered low-rate initial production in August 2002 and completed initial operational test and evaluation in July 2004.

A five-year delivery order for the system was placed by the USAF in July 2006. Australia requested the sale of LAIRCM to equip its fleet of 12 C-130J in May 2008.


c-130j-3171Image @prometheus.med.utah.edu

The Northrop Grumman MODAR 4,000-colour weather and navigation radar is installed in the upward-hinged dielectric radome in the nose of the aircraft. The weather radar has a range of 250nm.

The radar C-130J Initially the Super Hercules had a navigation radar and weather MODAR 4000 Northrop-Grummam with a detection range of 460 km, which was quickly replaced by the multimode AN / APN-241 radar derived from the APG-66 F-16 offers different modes meteorology and navigation with a range of close to 600 km detection and also provides mapping, air- to -ground, air- to -air marking and SAR high resolution mode. in the mode of high resolution mapping can be coupled to the navigation system inertial and thus provide a navigation precision in addition with overprint of weather information and the C-130J defense system. Source @taringa.net

AN / APN-241 radar


The only radar in the transport class with a high resolution SAR mapping mode

The AN/APN-241’s capability remains unmatched by the competition as the only radar in the transport class with a high resolution SAR mapping mode. In addition to meeting needs for precision navigation, this unparalleled mapping capability enables operators to execute landing missions with confidence on unimproved runways without aid from ground-based landing systems.

No other radar in the industry can compete with the range and accuracy of the AN/APN-241. It is the only radar with a 10nm range Windshear mode and its unique two-bar can technology eliminates false alarms. And, unlike other systems, the AN/APN-241 windshear mode is not restricted by altitude. At 20 nautical miles, the AN/APN-241 provides the longest range air-to-air situational awareness mode of any transport radar. The Skin Paint mode also features computer generated target-sizing, a clutter-free display, and hands-free operation to the crew.

246Simultaneous multifunction capability

The AN/APN-241 is designed to allow pilots to focus on the mission rather than “working” the radar. Automatic tilt and gain adjustments reduce operator tasking, and with simultaneous mode interleaving, crews can select independent radar modes according to mission requirements. The AN/APN-241 provides overlays of flight plan or TCAS information on weather or ground maps for greater situational awareness. Operators may also ‘freeze’ the AN/APN-241 into a non-emitting mode to gain a tactical advantage.

The AN/APN-241 was built with growth in mind. Modifications to current modes and technologies will provide a maritime patrol capability suitable for fisheries protection, smuggling interdiction, and Search and Rescue missions. With the development of ‘Ballistic Wind’ mode, a modification which will measure drop zone winds, the AN/APN-241 provides a unique air drop capability to support both military and humanitarian missions.

Proven versatility

The highly adaptable AN/APN-241 is currently fielded on four aircraft: C-130H, C-130J, C-27J and C-295. Northrop Grumman has integrated the AN/APN-241 with five different avionics architectures and two antenna systems. As the baseline radar for the LMCO C-130J and Alenia C-27J, it has a solid, long-term production base with logistics and maintenance support through 2030 and beyond.

Source @northropgrumman.com

air_c-130j_uk_underside_bank_lgImage @defenceindustrydaily.com

Turboprop engines of C-130J

c-130-epcs-30-july-2015Image @militaryaerospace.com

The C-130J is equipped with four Allison AE2100D3 turboprop engines, each rated at 4,591 shaft horsepower (3,425kW). The all-composite six-blade R391 propeller system was developed by Dowty Aerospace.

Four Allison AE2100D3 turboprop engines


*Note table below shows that the AE 2100D3 with 4,637shp whereas the AE2100J with 4,591shp

Specification AE 2100D2 AE 2100D3 AE 2100J AE 2100P
Power shp (kW) 4,637 (3,410) 4,637 (3,410) 4,591 (3,376) 4,152 (3,054)
Dry weight lb (Kg) 1,776 (806) 1,740 (789) 1,666 (756) 1,627 (738)
Length in (m) 117.0 (2.97) 124.1 (3.15) 118.1 (3.00) 118.1 (3.00)
Height in (m) 52.5 (1.33) 46.3 (1.18) 52.9 (1.34) 52.9 (1.34)
Width in (m) 31.8 (0.81) 28.7 (0.73) 32.8 (0.83) 32.8 (0.83)
Pressure ratio 16.6 16.6 16.6 16.6
Compressor 14 HP 14 HP 14 HP 14 HP
Turbine 2HP, 2PT 2HP, 2PT 2HP, 2PT 2HP, 2PT
Applications Lockheed Martin C-130J Hercules, Alenia C-27J Spartan, Saab 2000 AEW&C, ShinMaywa US-2 Kai  

*Technical data (ISA SLS)

Source @rolls-royce.com

All-composite six-blade R391 propeller system

fan_1Image @theaviationzone.com

The engines are equipped with full-authority digital electronic control (FADEC) by Lucas Aerospace. An automatic thrust control system (ATCS) optimises the balance of power on the engines, allowing lower values of minimum control speeds and superior short-airfield performance.

The aircraft can carry a maximum internal fuel load of 45,900lb. An additional 18,700lb of fuel can be carried in external underwing fuel tanks. The refuelling probe installed on the centre of the fuselage has been relocated on the C-130J to the port side, over the cockpit.

Stretched C-130J-30


The C-130J-30 is the stretched version of the C-130J. The cargo floor length of the stretched version is increased from 40ft to 55ft which gives a significant increase in the aircraft’s airlift capability.

The stretched C-130J-30 can carry eight 463L pallets, 97 litters, 24 CDS (US Container Delivery System) bundles, 128 equipped combat troops or 92 paratroopers.

The first C-130J-30 for the UK RAF was delivered in November 1999 and deliveries of all 15 aircraft ordered were completed in June 2001.

The aircraft is in production for the US Air Force (39 aircraft, the first of which was delivered to the Air National Guard in December 2001), the Royal Australian Air Force (12), the Italian Air Force (ten) and are ordered by the Kuwaiti Air Force (four) and the Danish Air Force (three).


General Characteristics
Primary Function:
Global airlift

Contractor: Lockheed-Martin Aeronautics Company
Power Plant:
C-130E: Four Allison T56-A-7 turboprops; 4,200 prop shaft horsepower

C-130H: Four Allison T56-A-15 turboprops; 4,591prop shaft horsepower
C-130J: Four Rolls-Royce AE 2100D3 turboprops; 4,700 horsepower
Length: C-130E/H/J: 97 feet, 9 inches (29.3 meters)
C-130J-30: 112 feet, 9 inches (34.69 meters)
Height: 38 feet, 10 inches (11. 9 meters)
Wingspan: 132 feet, 7 inches (39.7 meters)
Cargo Compartment:
C-130E/H/J: length, 40 feet (12.31 meters); width, 119 inches (3.Remove 12 meters); height, 9 feet (2.74 meters). Rear ramp: length, 123 inches (3.12 meters); width, 119 inches (3.02 meters)
C-130J-30: length, 55 feet (16.9 meters); width, 119 inches (3.12 meters); height, 9 feet (2.74 meters). Rear ramp: length, 123 inches (3.12 meters); width, 119 inches (3.02 meters)
C-130E: 345 mph/300 ktas (Mach 0.49) at 20,000 feet (6,060 meters)

C-130H: 366 mph/318 ktas (Mach 0.52) at 20,000 feet (6,060 meters)
C-130J: 417 mph/362 ktas (Mach 0.59) at 22,000 feet (6,706 meters)
C-130J-30: 410 mph/356 ktas (Mach 0.58) at 22,000 feet (6,706 meters)
C-130J: 28,000 feet (8,615 meters) with 42,000 pounds (19,090 kilograms) payload

C-130J-30: 26,000 feet (8,000 meters) with 44,500 pounds (20,227 kilograms) payload.
C-130H: 23,000 feet (7,077 meters) with 42,000 pounds (19,090 kilograms) payload.
C-130E: 19,000 feet (5,846 meters) with 42,000 pounds (19,090 kilograms) payload
Maximum Takeoff Weight:
C-130E/H/J: 155,000 pounds (69,750 kilograms)

C-130J-30: 164,000 pounds (74,393 kilograms)
Maximum Allowable Payload:
C-130E, 42,000 pounds (19,090 kilograms)

C-130H, 42,000 pounds (19,090 kilograms)
C-130J, 42,000 pounds (19,090 kilograms)
C-130J-30, 44,000 (19,958 kilograms)
Maximum Normal Payload:
C-130E, 36,500 pounds (16,590 kilograms)

C-130H, 36,500 pounds (16,590 kilograms)
C-130J, 34,000 pounds (15,422 kilograms)
C-130J-30, 36,000 pounds (16,329 kilograms)
Range at Maximum Normal Payload:
C-130E, 1,150 miles (1,000 nautical miles)

C-130H, 1,208 miles (1,050 nautical miles)
C-130J, 2,071 miles (1,800 nautical miles)
C-130J-30, 1,956 miles (1,700 nautical miles)
Range with 35,000 pounds of Payload:
C-130E, 1,438 miles (1,250 nautical miles)

C-130H, 1,496 miles (1,300 nautical miles)
C-130J, 1,841 miles (1,600 nautical miles)
C-130J-30, 2,417 miles (2,100 nautical miles)
Maximum Load:
C-130E/H/J: 6 pallets or 74 litters or 16 CDS bundles or 92 combat troops or 64 paratroopers, or a combination of any of these up to the cargo compartment capacity or maximum allowable weight.

C-130J-30: 8 pallets or 97 litters or 24 CDS bundles or 128 combat troops or 92 paratroopers, or a combination of any of these up to the cargo compartment capacity or maximum allowable weight.
Crew: C-130E/H: Five (two pilots, navigator, flight engineer and loadmaster)
C-130J/J-30: Three (two pilots and loadmaster)
Aeromedical Evacuation Role: A basic crew of five (two flight nurses and three medical technicians) is added for aeromedical evacuation missions. Medical crew may be decreased or increased as required by the needs of patients.
Unit Cost: C-130E, $11.9, C-130H, $30.1, C-130J, $48.5 (FY 1998 constant dollars in millions)
Date Deployed: C-130A, Dec 1956; C-130B, May 1959; C-130E, Aug 1962; C-130H, Jun 1974; C-130J, Feb 1999
Inventory: Active force, 145; Air National Guard, 181; Air Force Reserve, 102

Source @af.mil

C-130J international orders

Comparison of price and cargo capacity @forum.keypublishing.com

1186 C-130J and C-130J-30 aircraft were ordered and more than 150 delivered. Orders are: US Air Force, Air National Guard, Marine Corps and Coastguard (89 C-130J and C-130J-30 and 20 KC-130J tankers), UK (10 C-130J, 15 C-130J-30 all delivered), Italian Air Force (12 C-130J and 10 C-130J-30 all delivered), Royal Australian Air Force (12 C-130J, all delivered), Kuwaiti Air Force (four C-130J-30) and the Danish Air Force (four C-130J-30 all delivered).


In April 2004, the US Marine Corps formally accepted the first KC-130J tanker / transport into service. The aircraft was first deployed in combat in April 2005 in Iraq. In December 2006, an additional order was placed for three C-130J-30 for the USAF and one KC-130J for the USMC. The KC-130J was delivered to the USMC in October 2010.

mm62183-aeronautica-militare-italian-air-force-lockheed-martin-c-130j-super-hercules_planespottersnet_287636MM62183 Aeronautica Militare (Italian Air Force) Lockheed Martin C-130J Super Hercules – Image @planespotters.net

In May 2007, India requested the foreign military sale (FMS) of six C-130J aircraft. The $1.2bn FMS contract was placed in February 2008. The first C-130J was delivered to the Indian Air Force (IAF) in December 2010 and entered into service in February 2011. The third and fourth C-130Js were delivered in June 2011. The fifth aircraft was delivered in September 2011. Deliveries were concluded in December 2011.

iaf1400IAF – Image @jpaviography.com

In November 2007, Norway placed an order for the purchase of four C-130J Super Hercules aircraft under a $519m FMS agreement. One aircraft was delivered in November 2008 and the second in April 2009. Deliveries concluded in May 2010 with the handing over of the fourth C-130J aircraft. In September 2012, Lockheed Martin delivered an additional C-130J Super Hercules aircraft to the Norwegian Air Force as Norway lost one of its four aircraft in March 2012.

In January 2008, Canada placed a C$1.4bn order for 17 C-130J aircraft. The first delivery took place in June 2010 at the Canadian Forces Base Trenton. Deliveries were completed by April 2012.

130603-canadian-armed-forces-lockheed-martin-cc-130j-super-hercules-c-130j-30_planespottersnet_175117Canadian C-130J – Image @planespotters.net

In June 2008, the USAF ordered six HC/MC-130J special operations variants of the C-130J. The first MC-130J was delivered in March 2011.

In April 2010, the government of Israel ordered nine C-130J-30 aircraft. Lockheed Martin delivered the first C-130J Super Hercules aircraft to Israeli Air Force (IAF) in June 2013.

Israeli Air Force (IAF) – Image @lockheedmartin.com

Under an undefinitised contract action (UCA) signed with the US Government in April 2011, Lockheed Martin will supply an additional C-130J to Israel.

Qatar ordered four C-130J-30 aircraft. The production of the first C-130J-30 aircraft was completed in May 2011. Lockheed Martin delivered four C-130J-30 aircraft to the Qatar Armed Forces in September 2011. In August 2008, Iraq requested the sale of six C-130J-30 aircraft. The first aircraft completed its maiden flight in September 2012.

iraqi-c-130j-takeoffIraqi Air Force C-130J – Image @htka.hu

The Sultanate of Oman ordered one C-130J-30 long-configuration aircraft in July 2009 for delivery in 2012. In August 2010, Oman ordered two additional C-130J aircraft. The first aircraft was delivered in September 2012.

Lockheed Martin signed a contract with Tunisia in March 2010 to supply two C-130J Super Hercules airlifters. Lockheed Martin delivered the first C-130J to Tunisia in April 2013. The second aircraft was delivered in December 2014.

tunisian-air-force-receives-2nd-c-130j-super-herculesTunisian Air Force Receives 2nd C-130J Super Hercules – Image @defaiya.com

The US Government awarded a $245m FMS contract to Lockheed Martin on 27 May 2010 for supplying three KC-130J refuelling aircraft to Kuwait Air Force. The contract was managed by the US Navy. The first aircraft was delivered in August 2014.

The Republic of Korean Air Force (ROKAF) ordered four C-130J Super Hercules aircraft in December 2010. Lockheed Martin delivered the first two C-130Js to the ROKAF in March 2014. It will also provide aircrew and maintenance training for two years.

Lockheed Martin was awarded a $270m contract by the USAF in February 2011 to supply C-130 Aircrew Training Systems (ATS). The contract includes provision of training and instruction services, site management, engineering support and operation and maintenance for aircrew training devices.

In September 2011, CAE was awarded a contract by the US Air Force to design, build and supply four additional full flight simulators for C-130J transport aircraft.

The first MC-130J Shadow II aircraft was delivered to the United States Air Force Special Operations Command by Lockheed Martin in September 2011. Lockheed Martin delivered the first HC-130J Combat King II aircraft to the US’ Air Education and Training Command (AETC) in the same month.

MC-130J Shadow II aircraft (MC-130J Commando II)

mc130commandoiimp141505575901_lockheedmartinMC-130J Commando II – Image @airheadsfly.com

The Commando II flies clandestine, or low visibility, single or multiship, low-level air refueling missions for special operations helicopters and tiltrotor aircraft, and infiltration, exfiltration, and resupply of special operations forces (SOF) by airdrop or airland intruding politically sensitive or hostile territories. The MC-130J primarily flies missions at night to reduce probability of visual acquisition and intercept by airborne threats. Its secondary mission includes the airdrop of leaflets. 

General Characteristics 
Primary Function: Air refueling of SOF helicopter/tilt rotor aircraft, infiltration, exfiltration and resupply of SOF by airdrop or airland 
Builder: Lockheed Martin 
Power Plant: Four Rolls-Royce AE 2100D3 Turboprops 
Thrust: 4,591 shaft horsepower 
Wingspan: 132 feet, 7 inches (39.7 meters) 
Length: 97 feet 9 inches (29.3 meters) 
Height: 38 feet 10 inches (11.9 meters) 
Speed: 362 knots at 22,000 feet 
Ceiling: 28,000 feet with 42,000 lb payload 
Maximum Takeoff Weight: 164,000 lbs 
Range: 3,000 miles 
Crew: Two pilots, one Combat Systems Officer (officers), and two Loadmasters (enlisted) 
Date Deployed: 2011 
Unit Cost: $67 million (fiscal 2010 dollars) 
Inventory: Active duty, 37 by fiscal 2017 

Source @af.mil

HC-130J Combat King II aircraft

4l-image HC-130J Combat King II aircraft – Image @airforce-technology.com

The HC-130J replaces HC-130P/Ns as the only dedicated fixed-wing Personnel Recovery platform in the Air Force inventory. It is an extended-range version of the C-130J Hercules transport. Its mission is to rapidly deploy to execute combatant commander directed recovery operations to austere airfields and denied territory for expeditionary, all weather personnel recovery operations to include airdrop, airland, helicopter air-to-air refueling, and forward area ground refueling missions. When tasked, the aircraft also conducts humanitarian assistance operations, disaster response, security cooperation/aviation advisory, emergency aeromedical evacuation, and noncombatant evacuation operations.

General Characteristics 
Primary function:
 Fixed-wing Personnel Recovery platform

Contractor: Lockheed Aircraft Corp. 
Power Plant: Four Rolls Royce AE2100D3 turboprop engines 
Thrust: 4,591 Propeller Shaft Horsepower, each engine 
Wingspan: 132 feet, 7 inches (40.4 meters) 
Length: 97 feet, 9 inches (29.57 meters) 
Height: 38 feet, 9 inches (11.58 meters) 
Operating Weight: 89,000 pounds (40,369 kilograms)
Maximum Takeoff Weight: 164,000 pounds (74,389 kilograms) 
Fuel Capacity: 61,360 pounds (9,024 gallons)
Payload: 35,000 pounds (15,875 kilograms)
Speed: 316 knots indicated air speed at sea level 
Range: beyond 4,000 miles (3,478 nautical miles) 
Ceiling: 33,000 feet (10,000 meters) 
Armament: countermeasures/flares, chaff
Basic Crew: Three officers (pilot, co-pilot, combat system officer) and two enlisted loadmasters 
Unit Cost: $66 million (fiscal 2010 replacement cost) 
Initial operating capability: 2013

Source @af.mil

Lockheed Martin was awarded an $84.3m contract by the US Air Force on 12 September 2011 for the first phase of the C-130J Maintenance and Aircrew Training System (MATS) II programme. The company will supply four weapon system trainers (WST) to the Air Mobility Command, Air Combat Command and Air Force Special Operations Command for aircrew instruction, and renders programme management and engineering services as part of the contract.

The contract had included an option to procure two more WSTs, in addition to other types of trainers, including a fuselage trainer. The USAF exercised one option to procure an additional WST. CAE will design and manufacture the WST under a subcontract received from Lockheed Martin in March 2013.

In October 2011, India exercised an option to purchase six additional C-130Js from Lockheed Martin under an estimated $1.2bn foreign military sale. The US Air Force (USAF) baseline instruments, six Rolls-Royce AE 2100D3 additional engines, eight AN/AAR-47 missile warning systems, and eight AN/ALR-56M advanced radar warning receivers will also be delivered under the military sale.

In October 2012, the US Coast Guard placed a $218m order with Lockheed Martin for three additional HC-130J aircraft.

Lockheed Martin delivered two additional C-130Js to Little Rock Air Force Base in December 2015. The US Government awarded a Multiyear II contract to Lockheed Martin in December 2015 for 78 C-130J aircraft.

In December 2015, the Royal Air Force awarded a £369m contract to Marshall Aerospace and Defence Group, Lockheed Martin and Rolls-Royce to receive Hercules Integrated Operational Support (HIOS) for the C-130J fleet until 2022.

Main material source @airforce-technology.com

sp-avia-lockheed-martin-c-130j-hercules-white-grid-blue-ink-17-inches_1024x1024Image @shopify.comc-130j_super_hercules_military_transport_aircraft_united_states_us_american_air_force_line_drawing_blueprint_001Image @airrecognition.com

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s