Daily Archives: December 19, 2015

Antonov An-178 Transport Aircraft

An-178 is a short-range medium-airlift transport aircraft currently under development by Antonov, a company based in Ukraine. The first An-178 prototype was rolled out in Kyiv on 16 April 2015.

The aircraft will be available in both civil and military configurations, and will replace the ageing aircraft such as Antonov An-12, Antonov An-26 and Antonov An-32.

Construction on the second An-178 aircraft began in March 2015 while maiden flight of the aircraft is expected to take place in late 2015.

The An-178 is expected to face potential competition from Alenia C-27J Spartan, EADS CASA C-295, Lockheed Martin C-130J, Embraer KC-390 and the Ilyushin Il-214.

In March 2015, Maximus Air signed an MoU with Antonov to place an order for an undisclosed number of An-178 twinjet civil variants. Maximus will be the launch customer of An-178 aircraft.

An-178 aircraft design features

The An-178 is based on An-158 aircraft manufactured by Antonov. Its airframe is constructed with aluminium alloys and composite materials. The semi-monocoque fuselage with a circular cross-section integrates moderately swept wings, winglets and a T-tail. It includes retractable landing gear with two main wheel bogies as well as a single nose wheel.


The base platform of the AN-178 can be developed into a number of civil and military variants. The airframe and onboard equipment are unified with AN-148 and AN- 158 aircraft.


The aircraft can carry 99 soldiers, 80 paratroops or evacuate 70 sick and wounded persons. It can be used in a range of missions including logistic support of troops, parachute drooping of cargoes at platforms or small troop divisions, carrying of injured personnel, and transportation of light vehicles. It can also be used to transport and deliver equipment and engines.



Avionics and performance of the Antonov transport aircraft

Martyn Cartledge ASP Photography @flickr

The aircraft is fitted with digital avionics, and a glass cockpit. It can fly in intensive air traffic, under VFR and IFR weather conditions both during the day and night times. It can take off and land on unpaved runways and pebble covered surfaces.

Peter Althoff @flickr

The flight deck integrates a dual duplex fly-by-wire system with two control channels including FCS-A and FCS-B parts. It also includes a flight simulator for training flight crews.

The flight control surfaces of the aircraft constitute ailerons, four control spoilers, six lift-dump/speed-brake spoilers, rudder and elevators, and an emergency mechanical cable back-up system.

The aircraft features a more spacious and fully pressurised cargo compartment, which can carry up to 18t of cargo over 1,000km. It has an onboard cargo capacity of 10t and can achieve a range of more than 4,000km. It can accommodate high capacity 1C containers with a lateral size of 2.44m х 2.44m, as well as maritime containers and IATA containers.


The An-178 transport aircraft is powered by two D-436-148FM turbofan engines developed by Ivchenko-Progress. Each engine generates a take-off thrust of 7,880kgf. The D-436-148FM has a dry weight of 1,450kg and an inlet diameter of 1,390mm.

D-436-148FM Turbofan

Takeoff (SLS; ISA)
Thrust, kgf 7,880
Maximum emergency (SLS; ISA)
Thrust, kgf 8,800
Maximum cruise( Н=11,000 m, Мп=0.75 ISA)
Thrust, kgf 1 700
Trust reversing (SLS; ISA)
Thrust, kgf 1,300
Dimensions, mm 3,694 x 1,784 x 1,930
Weight, dry, kg 1,450

Source ivchenko-progress.com

The upgraded engine has increased take-off thrust: 7010 kg as compared to the predecessor, D-436-148, which has a take-off thrust of 6570 kg.  Because the fan casing was made larger, an increased volume of air passes through the engine. Additionally, a better noise insulation system was developed. Source rusaviainsider.com

Source ukroboronprom.com.ua

Main material source airforce-technology.com

Images are from public domain unless otherwise stated

Main image – Gilles Denis @flickr

Revised Jan 23, 2018

Updated Jan 20, 2020

Queen Elizabeth-class aircraft carrier

The Queen Elizabeth class is a class of two aircraft carriers currently under construction for the Royal Navy. The first, HMS Queen Elizabeth, was named on 4 July 2014, with her ship commissioning planned for 2017, and an initial operating capability expected in 2020. The second, HMS Prince of Wales, is scheduled to be launched around 2017, followed by commissioning in 2020 and service thereafter. On 5 September 2014, at the NATO 2014 Wales summit, the Prime Minister announced that the second carrier will be brought into service, ending years of uncertainty surrounding its future.

The contract for the vessels was announced on 25 July 2007, by the then Secretary of State for Defence, Des Browne, ending several years of delay over cost issues and British naval shipbuilding restructuring. The contracts were signed one year later on 3 July 2008, after the creation of BVT Surface Fleet through the merger of BAE Systems Surface Fleet Solutions and VT Group’s VT Shipbuilding, which was a requirement of the UK Government.

QE aircraft carrier blocks scheme

The vessels currently have a displacement of approximately 70,600 tonnes (69,500 long tons), but the design anticipates growth over the lifetime of the ships. The ships will be 280 metres (920 ft) long and have a tailored air group of up to forty aircraft (though are capable of carrying up to fifty at full load). They will be the largest warships ever constructed for the Royal Navy. The projected cost of the programme is £6.2 billion.

The carriers will be completed as originally planned, in a Short Take-Off and Vertical Landing (STOVL) configuration, deploying the Lockheed Martin F-35B. Following the 2010 Strategic Defence and Security Review, the British government had intended to purchase the F-35C carrier version of this aircraft, and adopted plans for Prince of Wales to be built to a Catapult Assisted Take Off But Arrested Recovery (CATOBAR) configuration. After the projected costs of the CATOBAR system rose to around twice the original estimate, the government announced that it would revert to the original design on 10 May 2012.

HMS Queen Elizabeth Leaves Babcock Dock in Rosyth, UK – Image: navaltoday.com


General characteristics

michael-fallon-praises-progress-in-hms-queen-elizabeth-warship-construction-136402755740103901-151207152005Image: bt.comcarrier3Image: theengineer.co.ukms-queen-elizabeth-aircraft-carrier3.jpgImage: Michael Schofield

The ships’ company is 679 rising to 1,600 with air element added. A more recent parliamentary reply stated the average crew size will be 672.They will have a displacement of 65,000 tonnes on delivery, but the design allows for this to reach over 70,000 tonnes as the ship is upgraded through its lifetime.

Commanding Officer Captain Jerry Kyd onboard the HMS Queen Elizabeth Aircraft Carrier at Rosyth Dockyard on June 21, 2017, in Rosyth, Scotland. (Jeff J Mitchell/Getty)Jack Congreve onboard the HMS Queen Elizabeth Aircraft Carrier at Rosyth Dockyard on June 21, 2017, in Rosyth, Scotland. (Jeff J Mitchell/Getty)

Size of the new Queen Elizabeth Class aircraft carrier – Image: dailymail.co.uk

Comparing Queen Elizabeth Class with Nimitz  aircraft carrier

PrintImage: ejercitos.org

They have an overall length of 280 metres (920 ft), a width at deck level of 70 metres (230 ft), a height of 56 metres (184 ft), a draught of 11 metres (36 ft) and a range of 10,000 nautical miles (12,000 mi; 19,000 km).

British carriers and fighters in South China Sea after 2020: Here


British fighter planes visiting Japan will fly over the South China Sea and Britain will sail aircraft carriers in the Pacific once they are operational in 2020, given concerns about freedom of navigation there, Britain’s ambassador to the United States said on Thursday.

The envoy, Kim Darroch, told a Washington think tank that British Typhoon aircraft currently deployed on a visit to Japan would fly across disputed parts of the South China Sea to assert international overflight rights, but gave no time frame.

HMS Queen Elizabeth captain hails ‘special moment’ as he takes command of ship: Here


The first commanding officer of HMS Queen Elizabeth has hailed “a truly seminal moment for Scotland” as he took command of what he expects to be the last major aircraft carrier built in the United Kingdom.

Captain Jerry Kyd took command of the UK’s future flagship at Rosyth Dockyard, Fife.

He said maritime warfare has “changed very little” since the Battle of Jutland, when Royal Navy battle cruisers launched from Rosyth 100 years ago next week to enforce a British blockade during the First World War.

HMS Queen Elizabeth aircraft carrier takes to the seas: Here


The £3.5bn cost of the vessel is so high that doubts have been raised over whether the Royal Navy can afford enough fighters for it

Captain Jerry Kyd seems remarkably relaxed given he is scheduled on Monday to take to sea for the first time one of the biggest and most expensive defence projects in British history, the aircraft carrier HMS Queen Elizabeth.

To reach open sea, he will have to conduct two complicated manoeuvres, firstly to take it from the Rosyth dockyard basin where the carrier was built and then under the three Forth bridges. The calculations are fine but the prospect of miscalculation does not appear to scare him.

HMS Queen Elizabeth aircraft carrier computers still running 16-year-old Windows XP operating system: Here


Computers on the Royal Navy’s £3.1 billion new aircraft carrier is still running 16-year-old operating system Windows XP – and will for up to three years, the Ministry of Defence indicated today.

Reports that computers aboard HMS Queen Elizabeth, were running the ageing software emerged in the Times this morning, after reporters spotted them during a tour last week.

And today, the MoD suggested it could still be running the operating system throughout its three-year shakedown.

Merlin Helicopter First To Land On HMS Queen Elizabeth: Here

HMS Queen Elizabeth heads for new home port after assembly in Rosyth: Here


THE Royal Navy’s future flagship is expected to arrive in her new home port within weeks, Defence Secretary Michael Fallon has confirmed.

The £3 billion aircraft carrier HMS Queen Elizabeth will sail into Portsmouth following extensive preparations at the naval base to accommodate the largest ship in the fleet.

UK clears F-35 for take-off from Royal Navy’s HMS Queen Elizabeth: Here


The UK Ministry of Defence has cleared the F-35 Lightning II fighter jet for take-off from the deck of the Royal Navy’s Queen Elizabeth-class aircraft carrier, HMS Queen Elizabeth.

The clearance follows successful completion of ski-ramp trials on-board the British flagship vessel.

UK Defence Minister Harriett Baldwin said: “Successful ski-ramp trials mean the F-35 is cleared to fly from the carrier as the momentum continues for this game-changing jet.

“This milestone comes as our pilots and planes prepare to return from the US, ready for next year’s unforgettable flight trials from the deck of the nation’s new flagship.”

Baldwin confirmed that the F-35 Integrated Test Force, which includes five pilots from the UK, has successfully completed the ski-ramp trials milestone.

The British Royal Navy currently possesses 12 F-35 aircraft in the US, which are being tested ahead of a series flight trials slated for next year.

2 x Rolls-Royce Marine Trent MT30 gas turbines

Two Rolls-Royce Marine Trent MT30 36 MW (48,000 hp) gas turbine generator units

The Ministry of Defence decided not to use nuclear propulsion due to its high cost, so power is supplied by two Rolls-Royce Marine Trent MT30 36 MW (48,000 hp) gas turbine generator units and four Wärtsilä diesel generator sets (two 9 MW or 12,000 hp and two 11 MW or 15,000 hp sets). The Trents and diesels are the largest ever supplied to the Royal Navy, and together they feed the low-voltage electrical systems as well as four GE Power Conversion’s 20 MW Advanced Induction Motor (arranged in tandem) electric propulsion motors that drive the twin fixed-pitch propellers.

2 x Wärtsilä diesel generator 9 MW or 12,000 hp

Wärtsilä diesel generator sets two 9 MW or 12,000 hp 

2 x Wärtsilä diesel generator sets two 11 MW or 15,000 hp

Wärtsilä diesel generator sets two 11 MW or 15,000 hp

4 x GE Power Conversion’s 20 MW Advanced Induction Motor

Four GE Power Conversion’s 20 MW Advanced Induction Motor (arranged in tandem) electric propulsion motors QE aircraft carriers propulsion scheme

Instead of a single island superstructure containing both the ship’s navigation bridge and flying control (flyco) centres, the ships will have these operations divided between two structures, with the forward island for navigating the ship and the aft island for controlling flying operations.

1020 (2)

Under the flight deck are a further nine decks. The hangar deck measures 155 by 33.5 metres (509 by 110 ft) with a height of 6.7 to 10 metres (22 to 33 ft), large enough to accommodate up to twenty fixed and rotary wing aircraft.


To transfer aircraft from the hangar to the flight deck, the ships have two large lifts, each of which is capable of lifting two F-35-sized aircraft from the hangar to the flight deck in sixty seconds. The ships’ only announced self-defence weapons are currently the Phalanx CIWS for airborne threats, with miniguns and 30 mm cannon to counter seaborne threats.

HMS Queen Elizabeth Aviation
Whilst HMS Queen Elizabeth is conducting Sea Trails around the south coast of Britain, she embarked different variants of Merlin Helicopters from 820 and 845 Naval Air Squadrons along with CH47 Chinook Helicopters.

Britain’s MoD awarded MBDA Systems $698 million missile contracts: Here


The agreements are for the Common Anti-air Modular Missile, the Meteor, and the Sea Viper, which will all be deployed on Britain’s Queen Elizabeth-class carriers when they are put in service.

PAAMS (Sea Viper)

The Principal Anti Air Missile System (PAAMS) is a joint programme developed by France, Italy and the United Kingdom for an integrated anti-aircraft warfare system. The prime contractor is EUROPAAMS, a joint venture between Eurosam (66%) and MBDAsubsidiary UKAMS (33%). MBDA also owns 66% of Eurosam, in effect giving it a 77% share of the project. In the United Kingdom PAAMS has been given the designation Sea Viper.

The PAAMS warfare system is in service with the Royal Navy, French Navy and the Italian Navy.

PAAMS components

Both variants of the PAAMS operate in conjunction with the S1850M Long Range Early Warning Radar. Source wikiwand.com

Aster air defence missile system

The Sylver (SYstème de Lancement VERtical) is a vertical launching system (VLS) designed by DCNS. The launcher comes in several variants, each distinguished by their height. A-35 and A-43 were developed for launching short range surface-to-air missiles, the A-50 for the long-range PAAMS air defense system, and the A-70 launcher for larger missiles such as the SCALP Naval land attack cruise missile. The numbers refer to the approximate length of the missile which can be accommodated, in decimetres, i.e. the A-43 can hold missiles which are up to 4.3 metres long whilst the A-70 can accommodate missiles up to 7 metres long.

The launchers come in eight-cell modules, except A-35 available in four-cell modules, with each eight-cell module occupying six square metres of deck space. Inner size cell is 60 cm long and 56 cm wide, and each cell has its own exhaust vent. Crotale NG (VT1) missiles can be quad-packed in one cell.
The primary application of the launcher has been the MBDA Aster missile. The Sylver, together with the Aster, is the primary component of the PAAMS naval anti-air warfare system. Using PAAMS, up to eight missiles can be launched in 10 seconds.

The French Navy has initiated studies to convert the SCALP EG missile to be capable of launch from the Sylver. This missile, the SCALP Naval, would give France a land attack capability in the mould of the U.S. Tomahawk missile. It would also be attractive to the British Royal Navy, whose Type 45 destroyers will be equipped with the Sylver launcher, although the A50 type cannot take this missile at present.

The basic unit of Sylver VLS is an eight-cell module fitted with two rows of 22-inch missile cells surrounding the uptake for exhaust gas.

Models / Measures:
Sylver A-35 (lenght = 2,6 meters / width = 2,3 meters / height = 3,5 meters)
Sylver A-43 (lenght = 2,6 meters / width = 2,3 meters / height = 4,3 meters)
Sylver A-50 (lenght = 2,6 meters / width = 2,3 meters / height = 5 meters)
Sylver A-70 (lenght = 2,6 meters / width = 2,3 meters / height = 7 meters)

Source seaforces.org

ASTER 15 and ASTER 30

ASTER 15/30 – Image: mbda-systems.com

The two-stage ASTER missiles are provided with two different solid propellant boosters resulting in the ASTER 15 and the ASTER 30 models. The ‘Pif-Paf’ control system enables the ASTER missile to counter high maneuverable missiles achieving a direct impact (hit-to-kill). The ‘Pif-Paf’ propulsion combines conventional aerodynamic control with control by gas jets acting through the centre of gravity of the missile. Until mid-course the guidance of an ASTER missile is based on the Inertial Navigation System (INS) updated through an uplink, in the terminal phase the guidance is provided by an active Radiofrequency seeker. The final stage of the ASTER missile is a ‘dart’ equipped with the seeker, a sustainer motor, a proximity fuze and a blast fragmentation warhead.

The ‘Pif-Paf’ propulsion – Image: wikiwand.com

The ASTER 15 is a short range missile intended for self-defense (point defense) purposes against highly maneuverable threats. The ASTER 15 is integrated on the SAAM and beginning in 2006 in the PAAMS system. The SAAM is installed on French-built frigates and the Charles de Gaulle aircraft carrier. The PAAMS will be provided to the Horizon frigates (France and Italy) and the Type 45 destroyers (United Kingdom).

The basic structure of -ASTER 15/30 – Image: et97.com

Diameter: 180 millimeter (7.09 inch)
Length: 4.20 meter (165 inch)
Max Range: 30,000 meter (16.2 nautical mile)
Min Range: 1,700 meter (0.92 nautical mile)
Target’s Max Altitude: 13,000 meter (8.08 mile)
Top Speed: 1,000 mps (3,601 kph)
Weight: 310 kilogram (683 pound)

ASTER 15 data deagel.com

Number of Stages: 2
Diameter: 180 millimeter (7.09 inch)
Length: 4.90 meter (193 inch)
Max Range: 120 kilometer (65 nautical mile)
Min Range: 3,000 meter (1.62 nautical mile)
Target’s Max Altitude: 20,000 meter (12.4 mile)
Top Speed: 1,494 mps (5,380 kph)
Weight: 450 kilogram (992 pound)

ASTER 30 data deagel.com

Raytheon Phalanx

Gun Characteristics

DESIGNATION Block 0 and Block 1 Gun Type: 20 mm/76 M61A1
Block 1B Gun Type: 20 mm/99 M61A1 Gatling OGB
Mounting: Vulcan Phalanx Mark 72
SHIP CLASS USED ON Most major warships from 1980 onwards
DATE IN SERVICE Block 0: 1980 aboard USS Coral Sea CVA-43
Block 1: 1988 aboard USS Wisconsin BB-64
Block 1B: 1999 aboard USS Underwood FFG-36 (operational in 2000 aboard USS Taylor FFG-50)
BORE LENGTH Block 0 and Block 1: about 59.8 in (1.520 m)
Block 1B: about 78 in (1.981 m)
Block 0: 3,000 rounds per minute cyclic
Block 1 and Block 1B: Selectable 3,000 or 4,500 rounds per minute cyclic

7.62mm Miniguns

7.62mm Miniguns

30mm Gun Remote fully automated mount

30mm Gun Remote fully automated mount


The ship’s radars will be the BAE Systems and Thales S1850M, the same as fitted to the Type 45 destroyers, for long-range wide-area search, the BAE Systems Artisan 3D Type 997 maritime medium-range active electronically scanned array radar, and a navigation radar.

BAE claims the S1850M has a fully automatic detection and track initiation that can track up to 1,000 air targets at a range of around 400 kilometres (250 mi).  Artisan can “track a target the size of a snooker ball over 20 kilometres (12 mi) away”, with a maximum range of 200 km. (Artisan will also be fitted to Type 23 frigates, the assault ships HMS Albion, HMS Bulwark and HMS Ocean.) They will also be fitted with the Ultra Electronics Series 2500 Electro Optical System (EOS) and Glide Path Camera (GPC).

Thales S1850M

S1850M long-range radar passive electronically scanned array radar for wide area search capable of tracking 1,000 targets at a range of 400 kilometres (250 mi). It is also claimed to be highly capable of detecting stealth targets, and is able to detect and track outeratmosphere objects at short range, making it capable of forming part of a Theatre Ballistic Missile Defence system

General data:
Type: Radar Altitude Max: 30480 m
Range Max: 398.2 km Altitude Min: 0 m
Range Min: 4.1 km Generation: Late 2000s
Properties: Non-Coperative Target Recognition (NCTR) – Jet Engine Modulation [Class Info], Continous Tracking Capability [Phased Array Radar], Pulse Doppler Radar (Full LDSD Capability)
Sensors / EW:
Type 1045 Sampson MFR – Radar
Role: Radar, Air Search, 3D Long-Range
Max Range: 398.2 km

Source cmano-db.com

BAE Systems Artisan 3D Type 997


BAE Systems Artisan 3D Type 997 maritime medium-range active electronically scanned array radar. Actual capabilities remain classifiedbut it is reportedly capable of tracking in excess of 800 objects at a range of 200km.

General data:
Type: Radar Altitude Max: 30480 m
Range Max: 203.7 km Altitude Min: 0 m
Range Min: 3.1 km Generation: Early 2010s
Properties: Identification Friend or Foe (IFF) [Side Info], Moving Target Indicator (MTI), Pulse Doppler Radar (Full LDSD Capability)
Sensors / EW:
Type 997 Artisan 3D – (2013) Radar
Role: Radar, Target Indicator, 3D Surface-to-Air
Max Range: 203.7 km

Source cmano-db.com

HMS Daring Operations Room

3D Radar Fitted To HMS Queen Elizabeth After Sea Trials: Here


The Royal Navy’s newly-developed radar system, the Artisan 3D, has completed its three years of trials.

The systems will now be fitted to new aircraft carrier HMS Queen Elizabeth, which is due in Portsmouth later in the year.

The radar is extremely powerful, with the ability to monitor over 800 objects at any one time, from up to 200,000 metres away.

It’s undertaken sea trials across multiple frigates over the last few years and has now proven its effectiveness in an operational environment.

Ultra Electronics Series 2500 Electro Optical System

– Radamec 2500 [EO] – (RAN-40S, RAT-31DL, SMART-L Derivative) Visual, Visual, Weapon Director & TargetSearch, Tracking and Identification TV Camera, Max range: 55.6 km – Radamec 2500 [IR] – (RAN-40S, RAT-31DL, SMART-L Derivative) Infrared, Infrared, Weapon Director & TargetSearch, Tracking and Identification Camera, Max range: 55.6 km – Radamec 2500 [Laser Rangefinder] – (RAN-40S, RAT-31DL, SMART-L Derivative) Laser Rangefinder, LaserRangefinder for Weapon Director, Max range: 7.4 km. Source cmano-db.com

Munitions and ammunition handling is accomplished using a highly mechanised weapons handling system (HMWHS). This is a first naval application of a common land-based warehouse system. The HMWHS moves palletised munitions from the magazines and weapon preparation areas, along track ways and via several lifts, forward and aft or port and starboard. The tracks can carry a pallet to magazines, the hangar, weapons preparation areas, and the flight deck.

HMWHS system

The HMWHS system consists of a network of two versions of these prime movers, which traverse forward and aft (longitudinal, version one) or port and starboard (athwartships, version two), each able to lift and move a payload to locations within its predefined area of travel. The moles can transfer payloads between each other, so the payloads can be located anywhere within the magazine. The two mole versions are different shapes to enable lifting and lowering of the palletised munitions in the correct orientation, ontothe set stowage and transfer positions, and are equipped with electric traverse and lift drives, allowing accurate positional control within the magazine.

Royal Navy

In a change from normal procedures the magazines are unmanned, the movement of pallets is controlled from a central location, and manpower is only required when munitions are being initially stored or prepared for use. This system speeds up delivery and reduces the size of the crew by automation.

The Emergency Slides On The UK’s New Aircraft Carrier Look Like Way Too Much Fun: Here

Carrier air group

The vessels are expected to be capable of carrying forty aircraft, a maximum of thirty-six F-35s and four helicopters. The 2010 SDSR anticipated the routine deployment of twelve F-35Bs, rising to a surge force of 24 F-35Bs and a number of helicopters. Fourteen Merlin HM2 will be available as a Maritime Force Protection package on the carriers with typically nine in anti-submarine configuration and five with Crowsnest for airborne early warning; alternatively a Littoral Manoeuvre package could include a mix of RAF Chinooks, Army Apaches, Merlin HC4 and Wildcat HM2.

As of September 2013 six landing spots are planned, but the deck could be marked out for the operation of ten medium helicopters at once, allowing the lift of a company of 250 troops. The hangars are designed for CH-47 Chinook operations without blade folding and the V-22 Osprey tiltrotor, whilst the aircraft lifts can accommodate two Chinooks with unfolded blades.

See Details of Apache

Army ApachesHMS Queen Elizabeth @telegraph.co.uk

Fixed-wing aircraft

Although the size of the Queen Elizabeth class would enable it to accommodate most current and projected carrier-based fixed-wing aircraft, the lack of arresting gear means that, as initially completed, it is only capable of operating either STOVL aircraft, such as the AV-8B Harrier or F-35B Lightning, tiltrotor aircraft such as the V-22 Osprey, or aircraft that do not require either catapult assisted take-off or arrested recovery.

F-35B Lightning: Details

RAF F-35B Lightning

V-22 Osprey

V-22 Osprey

With the retirement of the Harrier GR7/9 in 2010, there remained no carrier-capable fixed-wing aircraft available to the Royal Navy or Royal Air Force. Their expected replacement is the Lockheed Martin F-35 Lightning II.

As originally intended, the ships will carry the STOVL version, the F-35B. The aircraft will be flown by pilots from the Fleet Air Arm and the Royal Air Force. The aircraft are expected to begin trials flying from Queen Elizabeth in 2018 with a carrier air wing fully operational by 2020.


Although the F-35B is fully capable of performing vertical landing, in a similar fashion to the way that the Harrier and Sea Harrier operated, this method of operation places limitations on the loads that the aircraft is capable of returning to the ship with. As a consequence, to avoid the costly disposal at sea of both fuel and munitions, the Royal Navy is developing the Shipborne rolling vertical landing (SRVL) technique for its operation of the Lightning II. SRVL is a hybrid landing technique that utilises the Lightning’s vectored thrust capability to slow its forward speed to around 70 knots to allow it to make a rolling landing, using its disc brakes, without the need of an arrestor wire.



The AgustaWestland AW101 is a medium-sized multi-role helicopter. Two versions are in service with the UK armed forces, where it is known as Merlin. The utility version can carry up to thirty-eight troops or sixteen stretcher patients and the HM2 anti-submarine warfare variant has a dipping sonar and sonar-buoys, and a complete electronic warfare suite.

Both versions use a common airframe, with three Rolls-Royce Turbomeca RTM322 engines, their range and endurance using only a two engine cruise option, is 750 nautical miles (1,390 km; 860 mi), or six hours. However, range can be extended further when the five underfloor fuel tanks are supplemented with auxiliary fuel tanks fitted in the cabin. Armament depends on mission, but includes anti-ship missiles, torpedoes, three door-mounted machine guns, multi-purpose rocket, cannon pods, air-to-air missiles and air-to-surface missiles. At least 14 Merlin MK2s will be assigned to the carrier.

Merlin MK2s door-mounted machine guns

Wildcat: Details

AgustaWestland Lynx Wildcat with torpedoes
 The AgustaWestland Lynx Wildcat is scheduled to enter service with the Royal Navy in 2015. The Wildcat can be equipped with several mission sensors, which can include: radar, active dipping sonar, electro-optical imaging, electronic surveillance measures and an integrated self-defence suite. The HM2 maritime version can be armed with air-to-surface missiles, torpedoes, depth charges, cannons and heavy machine guns. The aircraft has a maximum range of 520 nautical miles (960 km; 600 mi) and an endurance of four and a half hours.

Airborne early warning and control

The 1982 Falklands War made clear the importance of airborne early warning and control and led to the development of the Sea King AEW2, which was succeeded by the Sea King ASaC7.

Sea King ASaC7

xv656-westland-sea-king-asac7-rnas-culdrose-royal-navy-2-xlSea King ASaC7 jack-daniels

This will be retired in the second half of 2018 and planning for its replacement was identified at an early stage as an integral part of the next-generation aircraft carrier. The programme became known as the “Future Organic Airborne Early Warning” (FOAEW), and contracts were placed with BAE / Northrop Grumman and Thales in April 2001. In April 2002, BAE and Northrop Grumman received a follow-on study contract for Phase II of the project, by then renamed Maritime Airborne Surveillance and Control (MASC). The MASC assessment phase began in September 2005 and by May 2006 three study contracts were awarded for MASC platform and mission systems options: one to Lockheed Martin UK for a Merlin helicopter fitted with AEW mission systems, another to AgustaWestland to maintain the present Sea King ASaC7 and finally to Thales UK to upgrade the Sea King’s mission systems.

The 2010 SDSR delayed the project which became a competition between Thales and Lockheed to supply Crowsnest, a bolt-on sensor package that can be carried by any Merlin HM2. The Thales pod is based on the Sea King’s Searchwater 2000; Lockheed had intended to use a derivative of the F-35’s APG-81 radar but is now believed to be using an Elta system.

Merlin HM2 with Crowsnest

Merlin HM2 with Crowsnest

Both systems will begin flight trials in the summer of 2014 ahead of Main Gate in 2016. Ten pods are planned with IOC in 2019. Until the Crowsnest system is available, a small force of Sea King ASaC.7 helicopters will remain in service with 849 Naval Air Squadron after the final withdrawal of the remainder of the Royal Navy’s Sea Kings.

Source: articles.maritimepropulsion.com/queenelizabethcruises.net/wikipedia.org/ from the internet/BAE Systems

Updated May 29, 2018