Saab Gripen Royal Thai Air Force

The Gripen is a multi-role fighter aircraft, intended to be a lightweight and agile aerial platform incorporating advanced, highly-adaptable avionics. It has canard control surfaces which contributes a positive lift force at all speeds, while the generous lift from the delta wing compensates for the rear stabilizer producing negative lift at high speeds, increasing induced drag. Being intentionally unstable and employing digital fly-by-wire flight controls to maintain stability removes many flight restrictions, improves maneuverability, and reduces drag. The Gripen also has good short takeoff performance, being able to maintain a high sink rate and strengthened to withstand the stresses of short landings. A pair of air brakes are located on the sides of the rear fuselage; the canards also angle downward to act as air brakes and decrease landing distance. It is capable of flying at a 70-80 degrees angle of attack.

Canard control surfaces – Gripen C RTAF

In order to enable the Gripen to have a long service life, projected to be roughly 50 years, the aircraft was designed to have low maintenance requirements; major systems such as the RM12 engine and PS-05/A radar are of a modular type to reduce operating cost and increase reliability. The Gripen was designed to be flexible as it had been anticipated that newly developed sensors, computers, and armaments would need to be integrated as technology advances.

Air to Air formation with a JAS-39D Gripen from the Royal Thai Air Force, Mirage 2000 from the United Arab Emirates and an F/A-18A Hornet from the Royal Australian Air Force.

Saab to upgrade Thailand’s national Air Command and Control System

Gripen – F16 soaring in the Gulf of Thailand during combined training RTAF, RTN and RTA: Matichon TV

Saab looking at Thailand to set up MRO hub: Here

Excerpt

Saab Automobile AB, a Swedish manufacturer of fighter jets, among other products, has expressed interest in investing in a production and maintenance hub in the Eastern Economic Corridor (EEC), says Industry Minister Uttama Savanayana

Pilot disorientation blamed for Gripen fighter crash: Here

Outcome of China and Thailand First Strike Falcon Joint Military Exercise – With Chinese News Video (no Eng sub): Here

Pics from Falcon Strike 2015

Thailand Gripens and Chinese PLAAF J-11 joint exercises 3Thailand Gripens and Chinese PLAAF J-11 joint exercises 1

Shenyang J-11: Details

RTAF : Falcon Strike 2017: Video

PLAAF J-10A and RTAF Gripen

J-10 (Jian 10) Vigorous Dragon: Details

Avionics and sensors

Gripen D – RTAF

All of the Gripen’s avionics are fully integrated using total of five MIL-STD-1553B digital data buses, described as “sensor fusion”. The total integration of the avionics makes the Gripen a “programmable” aircraft, allowing software updates to be introduced over time to increase performance and allow for additional operational roles and equipment.

Much of the data generated from the onboard sensors and by cockpit activity is digitally recorded throughout the length of an entire mission. This information can be replayed in the cockpit or easily extracted for detailed post-mission analysis using a data transfer unit that can also be used to insert mission data to the aircraft. The Gripen, like the Viggen, was designed to operate as one component of a networked national defence system, which allows for automatic exchange of information in real-time between Gripen aircraft and ground facilities. According to Saab, the Gripen features “the world’s most highly developed data link”. The Gripen’s Ternav tactical navigation system combines information from multiple onboard systems such as the air data computer, radar altimeter, and GPS to continuously calculate the Gripen’s location.

Royal Thai Air Force Net Work Centric

A01157625130914110001Royal Thai Air Force Net Work Centric developed by Avia Satcom/Rohde & Schwar

RTAF Saab 340 AEW&C: Details

untitledsaab-340

Royal Thai Navy HTMS Chakri Naruebet with Saab CMS: Here

Naresuan Class Guided-Missile Frigates (F 25T): Details

RTAF ordered 2 more Saab 340 ELINT & COMINT version: Here

kp3_70202

The Gripen entered service using the PS-05/A pulse-Doppler X band multi-mode radar, developed by Ericsson and GEC-Marconi, which is based on the latter’s advanced Blue Vixen radar for the Sea Harrier that also served as the basis for the Eurofighter’s CAPTOR radar. The all-weather radar is capable of locating and identifying targets 120 km (74 mi) away, and automatically tracking multiple targets in the upper and lower spheres, on the ground and sea or in the air.   The Mark 4 version has a 150% increase in high-altitude air-to-air detection ranges, detection and tracking of smaller targets at current ranges, 140% improvement in air-to-air mode at low altitude, and full integration of modern weapons such as the AIM-120C-7 AMRAAM, AIM-9X Sidewinder, and MBDA Meteor missiles.

PS-05/A Mark 4

PS05Mk4The upgraded radar, designated PS-05/A Mk4, features a new hardware and software, with the primary changes being in the system’s ‘back end’.
Gripen-C-back-end-radar-PS-05A-mk4-imagem-Saab: aereo.jor.br

TECHNICAL SPECIFICATIONS

Radar functions

Air-to-Air modes
  • Long and medium range look-up and look-down detection
  • Low probability of intercept
  • Multiple target Track-While Search
  • Short range auto acquisition and tracking
  • BVRAMRAAM and Meteor missile data link
  • Non cooperative target recognition (NCTR)
  • ECM immunity
  • Passive operation
Air-to-Surface modes
  • Mapping. Real beam and high resolution SAR
  • Ground Moving Target Indication (GMTI)
  • Ground Moving Target Tracking (GMTT)
  • Sea surface search and tracking
  • Air-to-ground ranging
  • ECM immunity
  • Weather Mapping mode

Technical data

  • General: Pulse Doppler, X band radar, monopulse
  • Sub-units: 4 Rack mounted units + antenna unit and waveguide parts
  • Weight: 150 kg
  • Antenna (ANT): 60 cm, Identification Friend or Foe (IFF) dipoles
  • Power Amplifier Unit (PAU). Transmitter: Travelling-Wave Tube (TWT), liquid cooled, peak power >10 kW
  • Transmitter AuxilliaryAuxiliary Unit (TAU)
  • High-FrequencyExciter Receiver Unit (EXRHFU): Narrowband and wideband receivers, digital pulse compression, state-of-the-art spectral purity and noise figures
  • Signal and data processorRadar Processing Unit (RPUSDP): Saab airborne Modular Avionic Computer System (MACS) computer system and parallel COTS based multiprocessor cluster, solid state discs for recording
  • Mean Time Between Failure (MTBF): 250 400 hours in airborne operation

Technical data Saab

Cockpit

Gripen C RTAF

The primary flight controls are compatible with the HOTAS control principle – the centrally mounted stick, in addition to flying the aircraft, also controls the cockpit displays and weapon systems. A triplex, digital fly-by-wire system is employed on the Gripen’s flight controls, with a mechanical backup for the throttle.

GripenCockpit2

Datalinks and communications – Flygvapnet pioneered the use of datalinks in the combat aircraft, fielding first versions on SAAB 35 Draken in mid 1960s. Gripen is equipped with four high-bandwidth, two-way data links, with range of around 500 kilometers. This allows for exchange of targeting information and other data, even when one of aircraft is on the ground. One Gripen can provide data for four other aircraft, as well as get access to ground C&C systems and SAAB-Ericsson 340B Erieye “mini-AWACs” aircraft. It can also allow fighters to quickly and accurately lock on to target by triangulation of data from several radars. Annother possibility includes one fighter jamming the target while another tracks it, or several fighters using different frequencies at the same time to penetrate jamming easier. Source defenseissues.wordpress.com

UTuihnkNote lower right switch show “PEACE” and “WAR” setting it is said that the WAR setting boast the Gripen performance by 30% and it could attain +12 G 

The Gripen includes the EP-17 cockpit display system, developed by Saab to provide pilots with a high level of situational awareness and reduces pilot workload through intelligent information management.

C7rqFwDXwAEL016

The Gripen features a sensor fusion capability, information from onboard sensors and databases is combined, automatically analysed, and useful data is presented to the pilot via a wide field-of-view head-up display, three large multi-function colour displays, and optionally a helmet mounted display system (HMDS).  

Helmet mounted display system (HMDS) – COBRA

Saab Cobra

Pilots equipped with a helmet-mounted display (HMD) such as the Saab Cobra for Gripen C/D are much better able to combat targets on the ground and in the air.

By aiming the head rather than the entire aircraft at the target, the pilot can rapidly lock the homing device using HOTAS (hands on throttle and stick) and take advantage of the missile’s performance capabilities. A missile can operate with much higher g-forces than an aircraft; the ratio is roughly 60 g for a missile to 9 g for Gripen.

Jakob Högberg is a Saab pilot who uses an HMD. “You can use a different technique with an HMD,” he says. “HMD provides better situational awareness, the pinpointing options are simpler and we are faster at shooting.”

A helmet-mounted visor displays flight information such as altitude and airspeed, along with pinpointing and details of targets detected in the surrounding area. “Reality is combined with the system since the pinpointing is superimposed over what the pilot sees,” says Högberg.

The helmet is integrated with other systems on Gripen, and it is customised to the pilot’s head to ensure that the visor is positioned at the right height and distance from the pilot’s eyes. Otherwise there is a risk of the pilot experiencing double vision or image loss. The helmet sensors must also be calibrated with sensors in the aircraft so that the information is displayed in the right place in relation to reality. Source: saab.com

Of the three multi-function displays (MFD), the central display is for navigational and mission data, the display to the left of the center shows aircraft status and electronic warfare information, and the display to the right of the center has sensory and fire control information. In two-seat variants, the rear seat’s displays can be operated independently of the pilot’s own display arrangement in the forward seat, Saab has promoted this capability as being useful during electronic warfare and reconnaissance missions, and while carrying out command and control activities.

15995014_1406808546027358_9197822042177969826_o

Mk10 seat

mk10-1

Operating Ceiling 50000+ ft (15,250m)
Minimum height/Speed Zero/zero in near level attitude
Crew boarding mass range 69.2 – 112.2 kg
Crew size range 3rd to 99th percentile
Maximum Speed for ejection 630 KIAS
Parachute type GQ Type 1000 Mk 2
Parachute deployment Drogue assisted
Drogue parachute type 5ft and 22 in.
Drogue deployment Drogue gun. Initiated by trip rod
Harness type Integrated
Ejection seat operation type Ejection gun and multi-tube rocket pack
Ejection gun Single, two stage
Gun stroke length 72 in.
Ejection initiation Handle on seat pan initiates gas operated seat firing system
Electronic Sequencer No
Barostatic time-release unit Yes, with 2 sec delay to give time for speed to decrease. Trip rod initiated.
Automatic back-up unit No
Manual override handle Yes
Guillotine Yes, early variant
Timers 0.50 second Drogue Gun Delay Timer, and a BTRU (barostatic time release unit)
Seat adjustment Up/down Actuator operated 28 Vdc
Arm restraints Yes
Leg restraints Yes, two garters
Oxygen supply Bottled emergency oxygen, Main oxygen system connection
Personal survival pack Yes, landscale, Liferaft option available
Aircrew services Personal Equipment Connector (PEC) provides connections for
– main oxygen
– back-up oxygen
– emergency oxygen
– anti-g suit
– mic/tel
Command ejection Yes
Canopy jettison No
Miniature detonating cord Yes
Miniature detonating cord Yes
Interseat sequencing system Yes, through command delay breech unit

Source martin-baker.com

Royal Thai Air Force 701 Fighter Squadron

14768541520_7eb6efd165_nCHyJX-5WEAAuDbo

9prvwo

AS-39 Gripen fighter Wallpapers 06 2560x1600

A4630408012172018

Gripen Multirole Fighter Aircraft: Details

Gripen operational cost lowest of all western fighters: Jane’s

The operational cost of the Swedish Saab Gripen aircraft is the lowest among a flightline of modern fighters, confirmed a White Paper submitted by the respected international defense publishing group IHS Jane’s, in response to a study commissioned by Saab.

Image: stratpost.com

For the purpose of modeling to create a standard or benchmark, the study arrived at the ‘aircrafts’ fuel usage, hence cost, based on a theoretical one hour sortie at max dry thrust’, not ‘necessarily reflective of actual fuel consumption and hence fuel cost of a one hour sortie’.

As is evident, the modeled cost pattern is closest to the derived cost pattern in the case of the Gripen, F-16, Rafale, and Eurofighter. The research and the model digress in the case of the F-35 and the F/A-18.

In the case of the F-35, the study says the different ‘costs arise from the differing power and specific fuel consumptions of the A / C and B models. The B model is the top figure in both cases’. The study says, “The single P&W F-135 engine is relatively fuel efficient for its power, resulting in a lower fuel burn at maximum dry thrust than might be expected.” It adds that, although obviously, ‘accurate CPFH for in-service aircraft does not exist’, ‘the US and Australian forecast costs both suggest it will not offer lower CPFH than current aircraft’, considering ‘the aircraft itself is an extremely sophisticated design carrying a large number of new and unproven onboard systems’.

Source stratpost.com

Specifications (JAS 39C/D Gripen)

JAS39 Gripen.svg
Data from Spick 2000, p. 431; Williams 2003, p. 90; Saab.
 23249743006_9115c719fd_b

Gripen Specifications

Wingspan  8.4 m / 27 ft 7 in
Length  14.10 m / 46 ft 3 in
Height  4.7 m / 14 ft 9 in
Wing Area 30 m² / 323 ft²
Engine 1 Volvo Flygmotor turbofan RM12
Maximum Take-Off Weight 14000 Kg / 30,900 lb
Empty Weight 6800 kg / 15,000 lb
Loaded Weight 8500 kg / 18,700 lb
Maximum Speed 2450 km/h / 1522 mph
Range 3250 KM / 1,983 miles (with external drop fuel tanks)
Maximum Service Ceiling 16000 m /52,500 ft
Climb Rate 100 s from brake release to 10 km altitude / 180 s approx to 14 km
Crew 1 or 2
Armament • 1 Mauser BK 27 27mm cannon
• 6 hardpoints that could allow 6 air-to-air missiles, 4 air-to-radar missiles, 4 air-to-surface missiles, 5 smart bombs, 2 anti-ship missiles, 5 bombs, 2 stand-off weapons, 2 ECM Pods, 2 recce Pods, 1 FLIR/LDP Pod, 2 AACMI Pods, and 3 fuel tanks

Technical data plane-encyclopedia.com

GRIPEN C (SINGLE SEATER)

Length (excl. pitot tube):

14.1 meters

Wing span (including launchers):

8.4 meters

Maximum take-off weight:

14000 kg

Empty weight:

6800 kg

Total load capacity:

5300 kg

Internal fuel:

 >2000 kg

Combat turnaround air-to-air:

10 minutes

GRIPEN D (TWO-SEATER)

Length (excl. pitot tube): 14.8 meters
Wing span (including launchers): 8.4 meters
Maximum take-off weight: 14000 kg
Empty weight: 7100 kg
Total load capacity: 5300 kg
Internal fuel:  >2000 kg
Combat turnaround air-to-air: 10 minutes

Source saab.com

Armament

  • Guns: 1× 27 mm Mauser BK-27 Revolver cannon with 120 rounds (single-seat models only)
  • Hardpoints: 8 (three on each wing and two under fuselage)  and provisions to carry combinations of:
    • Rockets: 4× rocket pods, 13.5 cm rockets
    • Missiles:
      • 6× AIM-9 Sidewinder (Rb.74) or IRIS-T (Rb 98)
      • 4× AIM-120 AMRAAM (Rb.99) or MICA
      • 4× Meteor (under development)
      • 4× AGM-65 Maverick (Rb.75)
      • 2× KEPD.350
      • 2× Rbs.15F anti-ship missile
    • Bombs:
      • 4× GBU-12 Paveway II laser-guided bomb
      • 2× Bk.90 cluster bomb
      • 8× Mark 82 bombs
maxresdefault (1)Saab Gripen Flight Suit Saab Chemical Biological Radiological and Nuclear (CBRN) Aircrew Protection for Gripen

Source: Wiki/Saab/TAF

Sundstrand T-62T-46LC-1 APU

APU intake and exhaust flaps open

The Gripen features an auxiliary power unit (APU) to reduce its dependence on ground systems, and the fighter’s onboard digital systems include “built-in self-test” capabilities that can download diagnostic data to a tech’s laptop computer. Service doors to critical systems are at head level or lower, allowing easy access by technicians. Flygvapnet experience shows that the Gripen requires 40% less maintenance work-hours and only half the fuel of the Viggen.

DWAtwKWX4AIT42q

After obtaining initial production machines, the Flygvapnet moved on to deliveries of Batch 2 Gripens, which featured a Sundstrand APU, replacing the older Microturbo APU, which was too noisy and not reliable enough. Source airvectors.net

RM12 engine

1_rm12-engine.jpg

The RM12 engine was developed by GE Aircraft Engines and Volvo Aero Corporation to power Swedish JAS-39 Gripen fighter. RM12, specially designed for single-engine use has a few different characteristic compared to it’ father F404-GE-400. First of all the fan has been strengthen to sustain a hit of 0.5 kg bird, the airflow was highten by 10% and the turbine was made of modern materials to stand higher temperatures. All of this increased the overall performance by 10-20%. Engine has FADEC with hydromachanical backup and backup ignition system. The RM12 has fast power setting response, unlimited number of power cycles, smooth to-afterburner transition and is very reliable. .

f404_reliability.gif

Type RM12
Weight kg 1055
Length cm 391
Maximal diameter cm 89
Inlet diameter cm 79
Bypass ratio 0,31
Fan pressure ratio x
Overall pressure ratio  27
Airflow kg/s 69
Temperature – max turbine inlet  °C
– max turbine outlet   °C
Thrust – maximal (SLS) kp 5507
– with afterburner (SLS) kp 8210
SFC – maximal thrust (SLS) kg/kN/h 84,0
  – afterburner (SLS) kg/kN/h 181,5

RM12 data leteckemotory.cz

Emergency engine shut down on Gripen C RTAF Gripen C RTAF 

Royal Thai Air Force Saab Gripen simulator 

Royal Thai Air Force Saab Gripen simulator 

Rafael’s Litening III Laser Designation Pod (LDP)

ELEC_Litening_AT_lg.jpg

Litening Airborne Day/Night Navigation & Targeting Pod provides precision strike capability to every fighter aircraft.

  • reduces pilot workload during the process of targeting maintenance target
  • Sighting system of high accuracy and reliability
  • reduces operational limitations
  • simple maintenance and support
  • low maintenance cost
  • potential upgrade
  • upgrades available for aircraft with multi-mission capability
  • Adaptable on most aircraft
  • detection, recognition, identification, laser designation of targets on land or sea
  • Release accurate ammunition laser-guided enema and general purpose weapons.
  • identification of air targets beyond visual range (BRV)
  • option for data link and long-range video

litening3_targeting_pod_03.jpg

The evolution of the Litening pod continued with the Litening III version, which utilized a more capable Gen III (3-5micron) FLIR, with a 640×480 digital detectors array. This system is also equipped with a target marker, which improves the coordination of ground and air forces, by designation of targets by day or night. Litening III system is also equipped with a dual-wavelength diode-pumped laser, which is compatible with training (eyesafe) and wartime operational modes. The system also employs electronic image stabilization, to provide cleaner images of targets, acquired at long standoff range.

Logistically, the integration of the pod is easy and straightforward; it can fit the centerline or E/O pod mounts available with most modern aircraft and require no structural changes in the aircraft. Pods can also be installed on different aircraft, in support of specific missions. For example, the US Reserves currently field eight pods per wing. The pod requires minimal maintenance and technical support on the flight line. It is self boresighting in flight, therefore requires no alignment prior to the mission and improved accuracy during operations.

litening-breakdown-lr

The Israeli targeting pod was procured by 14 air forces, including the US Air Force Reserve’s and Air National Guards for their F-16 Block 25/30/32 Fighting Falcon. Other air forces operating the system include the US Marine Corps (AV-8B), Israeli air Force (F-16), Spanish and Italian Navy (AV-8B) and Spanish air force (F/A-18), German Air Force (Tornado IDS), and the Venezuela (F-16A/B). The pods were also selected for South Africa’s Grippens, India’s Mirage 2000, MiG-27 and Jaguar. The most recent inquiry for the pods came in March, for a planned procurement of F-16s by Austria. The pod is also fully integrated in the Eurofighter, F-5E, MiG-21 and other types. Testing are underway to integrate the pod with Boeing F-15I operated by the Israel Air Force.

Litening III specifications:
length: 220 cm
diameter: 406 mm
total weight: 440 lb
Operating altitude: +40,000
IR sensor: 640×480 FPA Mid-IR wavelength
Day sensor: CCDTV
Wide FOV: 18.4 x 24.1
medium FOV: 3.5×3.5
Narrow field of view: 1×1
Field of regard: +45 / -150
Roll: +/- 400
Laser: Diode pumped laser designator, dual wavelength

Source military.rootsweb.ancestry.com

RTAF Gripen with Rafael’s Litening III Laser Designation Pod (LDP) – Image: The Nation

Armament

IRIS-T IRIS-T (Rb 98), AIM-9 Sidewinder (Rb.74), Rbs.15F anti-ship missile (above)JAS_39_Gripen_Saab_Multirole_fighter_aircraft_Sweden_Swedish_details_armament_001

27mm Mauser high-energy gun

saairforce.co.za

This 27mm cannon is a single barrel, gas-operated lightweight single barrel revolver cannon that fires electrically primed 27×145 mm ammunition at 1 700 rounds per minute.

Developed by Mauser-Werke Oberndorf of Germany, it’s features include low volume, low system weight, high fire power in target (air/air, air/ground), low time of flight projectile and a long stand-off range.

The cannon is relatively lightweight at only around 100 kg including barrel, but with a natural rate of fire of approximately 1700 rounds per minute (instantaneous time to rate), the relatively large shell (260g) and the high muzzle velocity of just over 1 km/s (v0) it packs a punch. The cartridge is ignited electrically and fed to the cylinder through linked belts or, in the case of the Eurofighter, through a linkless conveyor belt ammunition feed system, the first such system for revolver guns. Linkless systems (which are a staple in modern Gatling-type cannons) are less prone to stoppage and the ammunition uses considerably less space.

The different types of ammunition all have the same internal and external ballistic properties allowing for the use of belts with mixed ammunition for greater flexibility.

Ammunition types:
Air-to-air
High explosive

Air-to-ground
Armour piercing
Armour piercing high explosive

All purpose
Semi Armour Piercing High Explosive
Multi-purpose

Practice
Target Practice Target Practice Frangible Projectile
Target Practice Tracer

Used by:
Gripen (fuselage x 1)

Source saairforce.co.za

IRIS-T air-to-air missile

gripenirist_4

The IRIS-T, InfraRed Imaging System – Tail/Thrust Vector Controlled, is an International initiative to replace current AIM-9L/M Sidewinder short-range, air-to-air missiles. The missile combines advanced aerodynamics and thrust vector control in a tail controlled airframe to achieve outstanding performance.

It utilizes a solid-propellant rocket motor. IRIS-T features a roll-pitch (128×128) IR seeker with �90� look angle for high off-boresight angle missile engagements. Engagements against targets in the rear hemisphere can be done successfully with the missile locked-on target after launch. IRIS-T outstanding agility is the key to successfully engage highly maneuverable advanced aircraft

Overall, IRIS-T delivers increased agility, target acquisition range, hit accuracy, a more effective warhead and considerably improved protection against countermeasures compared with the Sidewinder missile. The mass, length, diameter and interface of the IRIS-T missile are very close to its predecessor achieving a high degree of compatibility which is a must for the IRIS-T program. During the flight tests, the IRIS-T achieved direct impact on the target even with IRCM (IR countermeasures) presence. The highly maneuverable IRIS-T missile will be integrated onto Typhoon, Gripen, F-16, Tornado, and F/A-18 aircraft. Dhiel BGT is the prime contractor for the program and Germany is the lead nation. Source deagel.com

gripenirist_2

SPECIFICATIONS
WEIGHT 87.4 kg
LENGTH 2936 mm / 2.9m
DIAMETER 127 mm
WARHEAD HE/Fragmentation
DETONATION
MECHANISM
Impact and active radar proximity fuse
ENGINE Solid-fuel rocket
WINGSPAN 447 mm
OPERATIONAL
RANGE
~25 km
FLIGHT ALTITUDE Sea level to 20,000 m
SPEED Mach 3
GUIDANCE
SYSTEM
Infrared homing
LAUNCH
PLATFORM
Typhoon, Tornado, F-4, F-16,NASAMS, Gripen, F-18.

Specification source wikipedia.org

AIM-9 Sidewinder

The Lima was followed in production in 1982 by the AIM-9M, which is essentially an improved AIM-9L. The Mike has improved background rejection, counter-countermeasures capability and a low smoke motor to reduce the visual signature of the inbound weapon. The AIM-9M has the all-aspect capability of the AIM-9L model, but provides all-around higher performance. The M model has infra-red countermeasures, enhanced background discrimination capability, and a reduced-smoke rocket motor. Deliveries of the initial AIM-9M-1 began in 1982. The only changes from the AIM-9L to the AIM-9M were related to the Raytheon Guidance Control Section (GCS). Several models were introduced in pairs with even numbers designating US Navy versions and odd for US Air Force. All AIM-9M GCS are comprised of three major assemblies; a seeker assembly for detecting and tracking the target; an electronics assembly for processing detected target information; and a servo assembly that transforms electrical tracking signals to mechanical movement of the fins. An umbilical cable assembly provides electrical interface between the missile GCS and the aircraft launcher. The umbilical I-3 cable also allows the flow of coolant from the LAU-7 to the missile GCS. AIM-9M GCS versions include the WGU-4A/B used in the AIM-9M-1 and AIM-9M-3, the WGU-4C/B used in the AIM-9M-4, the WGU-4D/B used in the AIM-9M-6, and the WGU-4E/B GCS used in the AIM-9M-8. The WGU-4E/B GCS uses advanced technology that has evolved through the WGU-4D/B development, while expanding the potential of the IRCM detection circuitry and improving the missile’s capability with respect to tactical IRCM deployment. Source scramble.nl

Meteor (Future upgrade)

Meteor Beyond-Visual Range Air-to-Air Missile, Meteor is air ramjet-powered missile with advanced seeker technology that can fly at sustained high speeds, over long ranges and with great agility to defeat air-to-air threats range 100-300 km at over Mach 4

AIM-120 AMRAAM

The AIM-120 AMRAAM (Advanced Medium-Range Air-to-Air Missile) is one of the most modern, powerful, and widely used air-to-air missiles in the entire world. After it entered limited service in 1991, this missile has been exported to about 35 countries around the world, where it has certainly been proven with over 3 900 test shots and 10 combat victories.

By the 1980s, the US deemed its current stock of air-to-air missiles, particularly the medium-range AIM-7 Sparrow, were obsolete, or at least not as capable as the latest Soviet missiles of the time. While the Sparrow was effective, with about 60 kills, it was not effective enough. In particular, it had one crushing fault—it was not fire-and-forget, meaning that the pilot was forced to remain on the scene and in danger until the missile reached its target. So, development of the AIM-120 AMRAAM began, along with European development of a short-range missile, resulting in the ASRAAM. In 1991, the AMRAAM entered limited service in the US Air Force. Two years later, it was fully operational there as well as the US Navy, while other countries started to show considerable interest.

ord_aim-120a_amraam_vs_aim-7_engagement_envelopes_lgImage: defenceindustrydaily.com
Country of origin United States
Entered service 1991
Missile
Missile length 3.66 m
Missile diameter 0.18 m
Fin span 0.53 m
Missile launch weight 150.75 kg
Warhead weight 22.7 kg
Warhead type HE blast-fragmentation
Range of fire up to 75 km
Guidance active radar homing

Source military-today.com

 

Saab RBS15F anti-ship missile

26841044_10156166619339612_4055535116868251819_o

The RBS-15 was adapted for air launch as the “RBS-15F”, entering service in 1989. Such RB-04s as remained in service after that time were passed on to the training role.

The RBS-15F is Flygvapnet JAS-39 Gripen and was carried on the AJS-37 Viggen fighter. The missile’s advanced navigation system can store a large number of map “waypoints” to allow it to maneuver through complicated flight profiles, and it can even perform “feints”, closing in on one target and then veering off abruptly to hit another at the very last moment.

SAAB is now working on a land-attack derivative of the RBS-15F with a “stealthy” radar system, infrared terminal seeker, and new warhead, for introduction no earlier than 2004.

xxeb158

SAAB RBS-15F:

Spec Metric English
Wingspan 1.4 meters 4 feet 7 inches
Length 4.45 meters 14 feet 7 inches
Total weight 600 kilograms 1,320 pounds
Warhead weight 300 kilograms 660 pounds
Speed high subsonic
Range at altitude 200 kilometers 125 MI / 110 NMI

Source craymond.no-ip.info

GBU-12D/B Paveway II LGB

globalassets-commercial-air-support-solutions-and-services-gripen-support-_ska2682_2340x1316globalassets-commercial-air-support-solutions-and-services-gripen-support-_ska3026_2340x1316

Source: wiki, Saab, Avia TAF

Images are from public domain unless otherswise stated

Updated Feb 06, 2018

Royal Thai Air Force Presentation on Current and Future Development (Eng Sub)

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.