Boeing T-X Trainer Aircraft

Boeing T-X aircraft is a new advanced pilot training system being offered by Boeing in partnership with Saab, for the T-X advanced pilot training programme of the US Air Force (USAF). The T-X aircraft is intended to replace the ageing T-38 trainer fleet of the USAF.

Boeing entered a joint development agreement with Saab to develop an all-new aircraft design for the T-X programme in December 2013.

Did Boeing Receive a T-X Prototype From Saab?

The first two production T-X aircraft were unveiled by Boeing and Saab in September.

Boeing and Saab Reveal First Two Aircraft for Air Force T-X Competition: Here

T-X programme details

The USAF unveiled the T-X programme requirements in March 2015, which was followed by the release of draft request for proposals in July. The USAF plans to acquire 350 T-X aircraft to replace the 431 T-38s. The initial operational capability (IOC) of the new fleet is projected for 2024.

The USAF launched T-X on December 30, 2016, when it released its formal request for proposals (RFP) for the Advanced Pilot Training (APT) requirement.

  • Planned procurement includes as many as 350 new trainers and could be worth as much as $16.3 billion to the winning team.
  • The USAF expected to select a winner of the T-X competition in 2017 (now slipped to July 2018).
  • The aircraft is expected to enter service no later than Fiscal Year 2024.
  • According to AETC, the period of operation for the T-X is 2026 to 2045, and the aircraft is set to fly 360 hours a year, at a mission readiness rate of at least 80 per cent.
  • The total value of the program could reach $16 billion.

Three significant performance characteristics stood out among over 100 points in the initial March 2015 requirements list: a sustained turn rate of a minimum of 6.5g, simulator visual acuity and performance, plus aircraft sustainment. That minimum sustained G requirement was set at 6.5g but with an aspiration to hit 7.5g — this is considered sufficient to ensure students can operate at 9g in a front-line fighter.

The future was also very much in mind as the requirement called for embedded training with synthetic sensors and a datalink. Other capabilities include the need for in-flight refueling (the aircraft must be at least adaptable to being fitted with an aerial refueling kit but built-in capability is preferred), a 10 per cent reduction in fuel usage over the T-38, and a minimum of being able to take off using 8,000ft of runway, plus a dry crosswind performance of 25kt and wet runway performance of 20kt.

Both cockpits are to have identical displays and controls, and the aircraft is to feature terrain and collision avoidance equipment. The T-X winner will also feature the ‘switchology’ for simulated release of both air-to-air and air-to-ground weapons, and be able to carry a weapon systems support pod and a travel pod. The cockpits will also feature wide-area displays, as per the F-35, and be compatible with NVGs. Source combataircraft.net

Northrop Grumman-BAE Systems, Lockheed Martin-Korean Aerospace Industries (KAI), and Raytheon-Leonardo are competing with the Boeing and Saab partnership for the T-X programme.

Northrop Grumman’s T-X breaks cover: Here

Screen-Shot-2017-09-22-at-08.07.38-768x501

Stavatti Javelin: Details

5821_4070623629

Northrop Grumman and BAE Systems are jointly developing a new aircraft for the T-X competition, while Lockheed Martin is offering T-50A aircraft, a variant of the KAI T-50. Raytheon / Leonardo is offering M-346-based T-100 Integrated Training System (ITS) for the programme.

Lockheed Martin / KAI T-50 Golden Eagle: Details

Leonardo T-100: Details

Boeing T-X Trainer design details

aerofred.com

The Boeing T-X aircraft incorporates a clean-sheet design, and airframe integrating a single engine, twin tails and advanced cockpit housing stadium seating and embedded training instrumentation. The aircraft is delivered to customers as a complete advanced pilot training system including state-of-the-art, ground-based training aids.

zMG_1335

The T-X matches fighter aircraft in terms of appearance, experience and performance. The twin-tail design resembles the design of current and future fighters and promises better stability, superior control, inbuilt speed break functionality, and safer in-flight refuelling.

The maintenance-friendly design supports long-term functionality and allows for the integration of latest technology and equipment.

Boeing

The aircraft serves as a more affordable and flexible platform when compared with the existing aircraft in its class. The system also supports technological evolutions to meet the requirements of future training needs.

The comprehensive advanced pilot training solution offers highly realistic simulation, computer-based training modules, and adaptive training. It also provides a complete suite of instructor tools to support a wide range of training needs.

The Boeing T-X design features less and more common fixings and ensures the maintenance crew to easily access critical items.

The aircraft is also compatible with the common USAF ground equipment and uses established component providers to cut down supply chain complexity.

Cockpit and avionics

The trainer integrates a modern fighter-like cockpit equipped with flexible avionics. The cockpit features a modular large area display offering a range of training options for both instructors and students.

The stadium seating layout of the aircraft houses an instructor and a student. The seating arrangement offers an ideal position for instructor and visibility for flight instructions to perform basic traffic pattern operations and advanced visual air combat training.

The JPATS 1-7-compliant seating also accommodates a range of individuals of different body sizes.

The cockpit is equipped with fly-by-wire flight controls ensuring excellent handling at all speeds, flight parameters and high angle-of-attack.

Boeing T-X engine

The aircraft is powered by a GE F404 engine offering higher power, improved fuel efficiency and superior mission capability.

GE F404 engine

1_RM12-engineGeneral Electric F404 afterburning turbofan

Source geaviation.com

Specifications

Structural

Crew: 2
Length: 46.42 ft (14.15 m)
Width: 32.81 ft (10.00 m)
Height: 13.12 ft (4.00 m)
Empty Weight: 7,165 lb (3,250 kg)
MTOW: 12,125 lb (5,500 kg)

Installed Power
1 x General Electric F404 turbofan afterburning engine developing 17,200lb of thrust.

Standard Day Performance
Maximum Speed: 808 mph (1,300 kph; 702 kts)
Maximum Range: 1,143 mi (1,840 km; 994 nm)
Service Ceiling: 50,000 ft (15,240 m; 9.47 mi)
Rate-of-Climb: 33,500 ft/min (10,211 m/min)

Armament
None.

Source militaryfactory.com

Main material source airforce-technology.com

Images are from public domain unless otherwise stated

Advertisements

One thought on “Boeing T-X Trainer Aircraft

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.