French Safran help India revive its indigenous jet engine project – Kaveri

India will start developing its own fighter jet engine now, thanks to France

Non-availability of raw materials, critical components, lack of infrastructure and test facilities within the country and non-availability of skilled / technical manpower in the field of aero-engine technology are some of the major reasons for non-completion of project within the time schedule,” says Manohar Parrikar, India’s Minister for Defense in the Upper House of Parliament. Source

GTRE GTX-35VS Kaveri


The GTRE GTX-35VS Kaveri (Sanskrit: कावेरी) is an afterburning turbofan project developed by the Gas Turbine Research Establishment (GTRE), a lab under the DRDO in Bangalore, India. An Indian design, the Kaveri was originally intended to power production models of the HAL Tejas fighter, also known as the Light Combat Aircraft (LCA) being built by the Aeronautical Development Agency. However, the Kaveri programme failed to satisfy the necessary technical requirements or keep up with its envisaged timelines and was officially delinked from the Tejas programme in September 2008.

Snecma, on a tie up with DRDO, is slated to revive and certify the engine as part of the offsets deal for 36 Dassault Rafale jets purchased by India.

In Lok Sabha on 10 December. 2012 Defence Minister A K Antony gave an update on the progress made by the Kaveri Engine Development Project as follows:

  1. So far, 9 prototypes of Kaveri Engine and 4 prototypes of Kabani (Core) Engine have been developed.
  2. 2200 hours of test (ground and altitude conditions) has been conducted.
  3. The following two major milestones have been achieved:
    1. Successful completion of Official Altitude Testing (OAT) ; and
    2. Demonstration of First Block of flight of Kaveri Engine in Flying Test Bed (FTB).

Kaveri Engine was integrated with IL-76 Aircraft at Gromov Flight Research Institute (GFRI), Russia and flight test was successfully carried out up to 12 km maximum altitude and maximum forward speed of 0.7 Mach No. Twenty Seven flights for 57 hours duration have been completed.

DRDO demonstrated its technological capability in aero-engine technology. This has been a great achievement in the aerospace community of the country, when the first ever indegeniously developed fighter aircraft engine was subjected to flight testing. Tacit knowledge acquired by the DRDO scientists during this project will also be applied for further aerospace technology. Kaveri spin-off engine can be used as propulsion system for Indian Unmanned Strike Air Vehicle (USAV).

In January 2013, the GTRE director said that they are abandoning the plan for co-development with Snecma, but they still need an overseas partner, which will be selected through competitive bidding.

In November 2014, The Defense Research and Development Organization (DRDO) decided to abandon the Kaveri engine (GTX-35VS ) programme due to its shortcomings.


Foreign help

On 4 July 2016, according to Indian media report, France offered to invest EUR 1 billion to revive India’s combat jet engine project, proposing a joint development plan that could see the stalled Kaveri gas turbine powering indigenous Tejas fighters by 2020.

On 20 November 2016, DRDO Director General for Aeronautics Cluster C P Ramanarayanan confirmed that DRDO and French Snecma have tied up to revive Kaveri Engine as part of the offsets deal for 36 Rafale jet. It is expected that the engine would be integrated and tested in LCA Tejas by 2018.


Plans are also already under way for derivatives of the Kaveri, including a non-afterburning version for an advanced jet trainer and a high-bypass-ratio turbofan based on the Kaveri core, named as Kabini.

  • GTX-35VS Kaveri:
    • HAL Tejas (planned for production models)
    • HAL Advanced Medium Combat Aircraft
  • Derivatives:
    • Kaveri Marine Gas Turbine (KMGT), a recently developed derivative of the GTX-35VS Kaveri engine for ships.
    • Ghatak,a Kaveri derivative to be developed to power India’s Unmanned Combat Air Vehicle DRDO AURA.

Specification (GTX-35VS Kaveri)

General characteristics

  • Type: afterburning turbofan
  • Length: 137.4 in (3490 mm)
  • Diameter: 35.8 in (910 mm)
  • Dry weight: 2,724 lb (1,235 kg) [Goal: 2,100-2450 lb (950-1100 kg)]


  • Compressor: two-spool, with low-pressure (LP) and high-pressure (HP) axial compressors:
    • LP compressor with 3 fan stages and transonic blading
    • HP compressor with 6 stages, including variable inlet guide vanes and first two stators
  • Combustors: annular, with dump diffuser and air-blast fuel atomisers
  • Turbine: 1 LP stage and 1 HP stage


  • Maximum thrust:
  • Military thrust (throttled): 11,687 lbf (52.0 kN)
  • Full afterburner: 18,210 lbf (81.0 kN)(planned to be refined to >95 kN)
  • Specific fuel consumption:
  • Military thrust (throttled): 0.78 lb/(lbf•h) (79.52 kg/(kN·h))
  • Full afterburner: 2.03 lb/(lbf•h) (207.00 kg/(kN·h))
  • Thrust-to-weight ratio: 7.8:1 (76.0 N/kg)

Engine cycle

  • Airflow: 172 lb/s (78.0 kg/s)
  • Bypass ratio: 0.16:1 (it should be increased to 0.5:1)
  • Overall pressure ratio: 21.5:1 [Goal: 27:1]
  • LP compressor pressure ratio: 3.4:1 [Goal: 4:1]
  • HP compressor pressure ratio: 6.4:1
  • Turbine entry temperature: 2,218-2,601 °F (1,214-1,427 °C; 1,487-1,700 K) [Goal: 3,357 °F (1,847 °C; 2,120 K)]



Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s