Sukhoi Su-35

The Sukhoi Su-35 (Russian: Сухой Су-35; NATO reporting name: Flanker-E) is a designation for two separate, heavily upgraded derivatives of the Su-27 ‘Flanker’. They are single-seat, twin-engine, supermaneuverable multirole fighters, designed by Sukhoi and built by Komsomolsk-on-Amur Aircraft Production Association (KnAAPO). The Su-35 is also known as Super Flanker.

The first variant was designed during the 1980s, when Sukhoi was seeking to upgrade its high-performance Su-27, and was initially known as the Su-27M. Later re-designated Su-35, this derivative incorporated aerodynamic refinements to increase manoeuvrability, enhanced avionics, longer range, and more powerful engines. The first Su-35 prototype, converted from a Su-27, made its maiden flight in June 1988. More than a dozen of these were built, some of which were used by the Russian Knights aerobatic demonstration team. The first Su-35 design was later modified into the Su-37, which possessed thrust vectoring engines and was used as a technology demonstrator. A sole Su-35UB two-seat trainer was built in the late 1990s that strongly resembled the Su-30MK family.


In 2003, Sukhoi embarked on a second modernization of the Su-27 to produce what the company calls a 4++ generation fighter that would bridge the gap between legacy fighters and the upcoming fifth generation Sukhoi PAK FA. This derivative, while omitting the canards and air brake, incorporates a reinforced airframe, improved avionics and radar, thrust-vectoring engines, and a reduced frontal radar signature. In 2008 the revamped variant, erroneously named the Su-35BM in the media, began its flight test programme that would involve four prototypes.

The Russian Air Force has ordered 48 production units, designated Su-35S, of the newly revamped Su-35.


In 2003, even as Russia aimed to export the Su-27M, Sukhoi launched a project to produce a fighter to bridge the gap between upgraded variants of the Su-27 and Su-30MK, and Russia’s fifth-generation Sukhoi PAK FA. The project’s aim was a second modernization of the Su-27 airframe (hence its classification as a “4++ generation fighter”) by incorporating several characteristics that would be implemented on the PAK FA.  Additionally, the aircraft was to be an alternative to the Su-30 family on the export market. The design phase was to take place until 2007, when it would be available for sale. It was later reported that the programme was launched due to concerns that the PAK FA project would encounter funding shortages. The project’s in-house designation is T-10BM (Bolshaya Modernizatsiya, “Big Modernization”) while the aircraft is marketed as the Su-35.

163955136The reinforced airframe sees extensive use of titanium alloys, increasing its durability to some 30 years or 6,000 service hours, and raising the maximum takeoff weight to 34.5 tonnes. Internal fuel capacity was increased by more than 20% to 11.5 tonnes, and could be raised to 14.5 tonnes with the addition of drop tanks; in-flight refueling can also be used to extend missions.

a0102380_49752770dae7bCurrent Cockpit layoutjyySQBe10679907746_640b9eb5bb_o10679874265_a21595df45_oNew Cockpit Layout

Sukhoi has overhauled the avionics suite, at the heart of which is the information management system that greatly enhances man-machine interaction. The system, which has two digital computers, collects and processes data from various tactical and flight-control systems and presents the relevant information to the pilot through the two main multi-function displays, which, together with three secondary MFDs, form the glass cockpit. The aircraft features many other upgrades to its avionics and electronic systems, including digital fly-by-wire flight-control system, and the pilot is equipped with a head-up display and night-vision goggles.

LAKI5282_TLCIrbis-E passive electronically scanned array radarRadar Irbis E_Ares35-Radar-System-awsome-see

Молния Сухого поражает F-35 JSF


Air Power Australia – Australia’s Independent Defence Think Tank

Air Power Australia NOTAM

3rd September, 2007

Colonel of Aviation Grigoriy “Grisha” Medved (retd)

This time, the Sukhoi Su-35 has the new Tikhomirov NIIP IRBIS-E ESA radar and can talk to earlier model Su-30MK to pass target coordinates – like Indian Air Force Su-30MKI talks to older MiG-21 and tells when to fire its missile [Editor: This is the TKS-2 intraflight network]. Ramjet Vympel R-77M «Adder» in service for several years with long range of about 160 km. Also, some new weapons – we discuss these later.

F-35 in service from 2015 and Chuck finally understands penalty of having short arms and no punch, so redoes AIM-120 AMRAAM into the «D» model, with range of 110 km and a two-pulse motor – Americans have not yet solved ramjet drive like Russia. Still, the AIM-120D is a big improvement on old models – Americans then sell old junk to Allies to fit to Super Hornets. Not fit too many AIM-120D inside Pidgeon – some say four, others two in weapon bay. Cannot put more on pylons – all stealth is then gone and Sukhoi kills Pigeon like a Super Hornet. Also AIM-120 only have radar head [Editor: seeker]. Sukhoi have lots of shots and choose seeker head – mostly carry 8 mix R-77M with big centre tank.

We make the discussion easy – we use «DIED» kill-chain model: Detect, Identify, Engage, Destroy.

First, we detect. We ask our friends at the Russian Institute of Radio Physics and Electronicsfor the analysis of «Pigeon on Stick» radio-location reflections. They ask a very good question:«Is this US version or export version?» I say US version – if you can kill that model, export model easier to kill – much bigger radio-location reflection. We match the estimated radio-location reflection with IRBIS-E detection performance in table:


Radar Cross Section [m2]

IRBIS-E Detection Range [km]

Outside AIM-120D Range?









Top and Bottom








Source @

Physics colleagues say many glints as Pigeon flies and turns. Need to fire R-77M outside AIM-120D range so try to duck head-on shot. This is not so hard to do.

AIR_F-35C_Weapon_Trials_LMCO_lgRadar Cross Section measurement of JSF shape (US DoD).

Tactics are important. On fighter sweep we fly line-abreast, put two Su-35 60 km then Su-30MK 40 km more each side – see side radio reflections of Pidgeon and pass target location to shooter with best position.

Pigeon hard to see from front on X-Band radio locator, but easy to spot on other bands. Australian JORN [Editor: Jindalee HF band Over The Horizon Backscatter Radar] very good to see stealth aircraft. Also, nice irony that Lockheed Martin make stealth aircraft and radio locator to see stealth aircraft. This one called «Silent Sentry», it works using radio reflection from TV and FM radio – very good over land at low heights and out to sea about 200 km. Also«Surface Wave Radio Locator» work in HF band. Use Pigeon wingspan or body length to tune the radio locator resonance – see very well over water to 400 km distance. Can now put such a radio-location system on a ship.

Old radio locators now making a comeback. Many low frequency [Editor: VHF band], like NNIIRT NEBO series «Tall Rack», OBORONA «Tall King» and P-18-2 «Spoon Rest» see stealth airplane at 10,000 meters as far as 250 km. Rosoboronexport have on-line catalogue for these radio locators [1].

Even the Pigeon radiates – it uses APG-81 «Low Probability of Interception (LPI)» radio locator, but still makes energy pulses when it transmits. The Czechs make the «Vera-E» and the Ukrainians makes the «Kolchuga» passive radio-location systems – these track the airplane from time-of-arrival of energy pulses.

Worst part of the Pigeon is a very hot engine – 160 Celsius hotter than standard combat jet engine exhaust. It makes a very bright star in the sky and long jet plume. Russia adapted space technology for seeing ICBM launches, to air combat fighter. The OLS-35 [Editor: Infra-Red Search and Track Set] in service now, much better versions planned in next decade. Today, we see a standard fighter at about 50 km, by 2017 new technology will see Pigeon at about 150 km. Angle only measurement, but if we fly wide fighter-sweeps and pass angles to other fighters using the TKS-2 network, we can use trigonometry calculations in software to find range. Also the OLS-35 is passive – this is good.

So, Grisha advises to build multi-spectral sensors in digital network to catch the Pigeon. Then pass target location to Sukhoi fighters so they can fly close enough, where on-board sensors can detect Pidgeon.

Identifying target type is always hard. Very bad to shoot airliner, but sometimes fighters hide under body of big plane. So, we declare Air Defense Identification Zone (ADIZ) like Americans have over Washington. For commerce airplane, pass over SAM sites to get finer look. Time short for intercept, so if see airplane in ADIZ, shoot first – ask later.

Also, use logic – if we see AWACs airplane then expect fighters in airspace between AWACs and Sukhoi, divide sky up and use fine search with radio locator and infra-red sensor.

Engage when first detect. R-77M fly for about 120 seconds out to about 160 km. Problem if glint from Pigeon fade during missile flight, so expect low kill probability. Keep guidance to last point if radio reflection show again. Send a two missile package, one radar locator [Editor: seeker] and one infra-red locator. Maybe R-77M radar self guidance head makes the Pigeon turn to show its tail feathers – very bright spot for infra-red seeker. Also use imaging infra-red so pass by flares to hit plane.

This table show how close R-77M get to lock on to Pigeon:


Radar Cross Section [m2]

R-77 Seeker Detection [km]







Top and Bottom









The Su-35 employs an Irbis-E passive electronically scanned array radar that constitutes an essential component of the aircraft’s fire-control system. The radar is capable of detecting a 3-square-metre (32 sq ft) aerial target at a distance of 400 km (250 mi), and can track 30 airborne targets and engage eight of them at the same time. Su-35S uses the N135 Irbis passive antenna array with electronic scanning radar for improved locating. The radar can also map the ground using a variety of modes, including the synthetic aperture mode.

N036 Byelka radar – N036B-1-01 in the wings – N036B-1-01, 358 modules

233L-Band AESA[IMG]L-Band AESA AESA geometrical field of regard, assuming a mainlobe beam steering angle of ±50° off the array boresight. Single plane monopulse precision angle tracking is feasible in the volume covered simultaneously by both arrays (Author). @ausairpower.netL-Band AESA @ausairpower.netSu-35S X F-22 Raptor315755


The Irbis-E is complemented by an OLS-35 optoelectronic targeting system that provides laser ranging, TV, Infra-red search and track (IRST) functionality. The Su-35 is compatible with a multitude of long- and short-range air-to-air missiles, precision and unguided air-to-ground weaponry that include missiles, fuel-air bombs and rockets. A maximum weapon payload of 8 tonnes can be carried on the fourteen hardpoints. The fighter may use missiles with a range of up to 300 km


The Su-35 is powered by a pair of izdeliye (Product) 117S (AL-41F1S) turbofan engines. Developed jointly by Sukhoi, NPO Saturn and UMPO, the engine is a heavily upgraded AL-31F variant, and draws on the design of the fifth-generation PAK FA’s Saturn 117 (AL-41F1) engines. Its thrust output is estimated at 142 kN (31,900 lbf), 20 kN (4,500 lbf) more than the Su-27M’s AL-31F. It has a service life of 4,000 hours.  The thrust vectoring nozzles operate in one plane for pitch, but the canting allows the aircraft to produce both roll and yaw by vectoring each engine nozzle differently.

Saturn AL-31F 117SIzdeliye (Product) 117S (AL-41F1S) turbofan engines thrust output is estimated at 142 kN (31,900 lbf)Sukhoi_Su-35S_07_RED_PAS_2013_07Thrust vectoring nozzles

The engine gives the Su-35 limited supercruise capability, or sustained supersonic speed without the use of afterburners. Radar-absorbent material is applied to the engine inlets and the front stages of the engine compressor to halve the Su-35’s frontal radar cross-section (RCS); the canopy was also modified to deflect radar waves.

Missile Defense System (Sensors)Sukhoi_Su-35S_at_MAKS-2011_airshow


Single-seat fighter.
Two-seat trainer. Features taller vertical stabilizers and a forward fuselage similar to the Su-30.
Single-seat fighter with upgraded avionics and various modifications to the airframe. Su-35BM is informal name.
Thrust-vectoring demonstrator.
Designation of production Su-35BM version for the Russian Air Force.



Specifications (Su-35S)

Data from KnAAPO, Su-27 books, Jane’s AWA

General characteristics


  • Maximum speed:
    • At altitude: Mach 2.25 (2,390 km/h, 1,490 mph)
    • At sea level: Mach 1.15 (1,400 km/h, 870 mph)
  • Range:
    • At altitude: 3,600 km (1,940 nmi)
    • At sea level: 1,580 km (850 nmi)
  • Ferry range: 4,500 km (2,430 nmi) with 2 external fuel tanks
  • Service ceiling: 18,000 m (59,100 ft)
  • Rate of climb: >280 m/s (>55,000 ft/min)
  • Wing loading: 408 kg/m² (500.8 kg/m² with full internal fuel) (84.9 lb/ft² 50% fuel)
  • Thrust/weight: 1.13 at 50% fuel (0.92 with full internal fuel)
  • Maximum g-load: +9 g


Kh-29T/L ) is a Soviet air-to-surface missile with a range of 10–30 km. It has a large warhead of 320 kg, has a choice of laser, infrared, active radar or TV guidance, and is typically carried by tactical aircraft such as the Su-24, Su-30, MiG-29K as well as the “T/TM” models of the Su-25, giving that craft an expanded standoff capability.Kh-31P/A is a Russian air-to-surface missile carried by aircraft such as the MiG-29 or Su-27. It is capable of Mach 3.5 and was the first supersonic anti-ship missile that could be launched by tactical aircraft. There are several variants, it is best known as an anti-radiation missile (ARM) but there are also anti-shipping and target drone versions. There has been talk of adapting it to make an “AWACS killer”, a long-range air-to-air missile.Kh-59ME  is a Russian TV-guided cruise missile with a two-stage solid-fuel propulsion system and 200 km range. The Kh-59M Ovod-M (AS-18 ‘Kazoo’) is a variant with a bigger warhead and turbojet engine. It is primarily a land-attack missile but the Kh-59MK variant targets shipping. The Kh-59MK2 is a stealth air-launched, fire-and-forget, highly subsonic cruise missile featuring an improved engine which provides a maximum range in excess of 290 kilometers. Its guidance system combines automatic inertial navigation and terrain recognition with one or more target’s area pre-programmed in the flying mission. It is intended to destroy a wide range of stationary targets with no radar or infrared signatures as well as troops and equipment placed in a wide area.
  • Bombs:
    • FAB-250 250-kilogram (550 lb) unguided bombs
    • FAB-500 500-kilogram (1,100 lb) unguided bombs
    • KAB-500L laser-guided bomb
    • KAB-1500 laser-guided bomb
KAB-500L laser-guided bombKAB-1500 laser-guided bomb
  • Other:
    • buddy refueling pod


Estimated Cost: USD 65 million (wiki 2013)

Source: wikipedia/

Like our FB page World Military Forum

10679925974_8eb78cdd74_oMAKS2013part7-03Su-35_GSh-301_cannon_LeBourget2013_217130 mm GSh-301 internal cannon with 150 roundsSukhoi_Su-35_on_the_MAKS-2009_(02)

KNIRTI-SAP-518-ECM-Pod-VVK-1SL265 Khibiny-M electronic warfare pod – The system is designed for radio direction-finding probing signal source irradiation followed by a distortion of the reflected signal parametersSu-35-KNAAPO-Brochure-Loadouts-2008Su-35SSukoi_Takeoff_Magazine_WideSu30-2014-12-29-EN

Updated Sept 20, 2016

One thought on “Sukhoi Su-35

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s